
Demo Program
Programmer's Reference

© Zentel Telecom Ltd., 2009

p2

© Zentel Telecom Ltd., 2009

p3

© Zentel Telecom Ltd., 2009

Table of Contents

Introduction 5
Compiling the applications 8
Running the demo application 9
DEMO.TES 10
 DEMO.TES program description 10
CHANTASK.TES 13
 CHANTASK.TES program description 13
 The check_outbound() function 17
 The check_inbound() function 26
OUT_IVR_TASK.TES 30
 OUT_IVR_TASK program description 30
 out_setup() function description 33
 out_dial() function description 36
 out_progress() function description 37
 out_release() function description 39
IN_IVR_TASK.TES 40
 IN_IVR_TASK.TES 40
SCRDEMO.TES 42
 SCRDEMO.TES program description 42
COMMAND.TES 47
 COMMAND.TES program description 47

p4

© Zentel Telecom Ltd., 2009

p5

© Zentel Telecom Ltd., 2009

Introduction
The DEMO is a collection of programs that together provide a more sophisticated example of
the Telecom Engine applicaton in action.
The programs have been designed using some of the techniques that have been employed
previously in larger telecommunincations systems, running many thousands of channels.
The demo programs have been stripped down to provide a more simplified application for
study, but it would not take much work to add the necessary code to convert this basic demo
software into a fully working system.

Below is a screen shot of the DEMO program running:

Since the DEMO program could form the basis for a more sophisticated Telecommunication
platform then this document aims to describe the various programs in detail so that some of
the techniques used can be copied or modified for this purpose.

Rather than requiring the programmer to pore over hundreds of lines of source code, this
document will take the programmer step by step through the demo application programs,
thereby making the job of understanding the demo programs a lot easier.

First of all lets look at the various programs that comprise the demonstration application.
These are as follows:

DEMO.TES - Master application that spawns all of the other tasks
CHANTASK.TES - This program takes control of a single E1 port/channel
SCRDEMO.TES - This program paints the terminal console screen
COMMAND.TES - This program takes input from the command line to scroll the screen
etc.
IN_IVR_TASK.TES - This program is spawned when an inbound call is received
OUT_IVR_TASK.TES - This program is spawned to take control of an outbound channel

The DEMO.TES program is the 'master' program that spawns the screen handling program (
SCRDEMO.TES) and the keyboard input program (COMMAND.TES) and then for each channel
in the system it spawns a single channel control task (CHANTASK.TES). The total number

p6

© Zentel Telecom Ltd., 2009

of channel control tasks that are spawned is defined in a text file called DEMO.CFG which also
defines whether a particular channel is an inbound or outbound channel.

If a channel is defined as an inbound channel then the CHANTASK.TES program will go into a
loop waiting for an inbound call, then when an inbound call is detected it will spawn the
inbound IVR task (IN_IVR_TASK.TES) which will simply play a voice message then hang up
the call.

If a channel is defined as an outbound channel then the CHANTASK.TES will immediately
spawn the outbound IVR task (OUT_IVR_TASK) which will wait a random amount of time
before initiating a dial on the channel, then pausing for another random amount of time before
hanging up.

In summary, the demo program can be configured (through the DEMO.CFG) file to spawn any
number of channel control tasks (one for each channel), which can then either be inbound
channels simply waiting for a call and then playing a message before hanging up, or they can
be outbound channels which continuously dial out on the channel after pausing for a random
amount of time.

Before describing these individual programs in more detail there are a couple of important
techniques that have been used in the overall architecture of the demo programs which should
be mentioned.

You will notice that there is a high level of specialization in the various tasks that comprise the
demo system. For example the SCRDEMO.TES program is in charge of updating the
application terminal screen for each channel -none of the other tasks writes to the screen
directly (except for scrolling log messages).

Also the CHANTASK.TES program is the only program that makes any calls to the Aculab call
handling function libraries to control the inbound or outbound calls to and from the system.
 The actual IVR tasks that play messages and/or receive DTMF input from the caller only
interact with the channel control task through either TCP/IP connections (using the
CXSOCK.DLL functions) or using internal Telecom Engine messages (using the CXMSG.DLL
functions).

By providing such specialisation of functionality it would be possible to completely replace the
CHANTASK.TES task with another one that perhaps uses a different protocol or even uses
completely different hardware. The CHANTASK.TES program supplied with the demo
programs assumes that the hardware is Aculab running the ISDN protocol, but this could be
changed to another application with a protocol other than ISDN (such as SS7 or CAS) without
needing to change the inbound or outbound IVR tasks.

This modular design is a powerful methodology that is reommended when designing of a
telecommunications systems, and the demo program shows some of these techniques in
action.

Cross Over Testing:

It might be quite useful to define the channels of the first E1 port on a board to be inbound
channels, whist defineing the the channels on the second E1 port to be outbound channels.
Then if a cross-over cable is used between the first and second E1 port and the Aculab
Configuration is defined correctly (E.g NET ISDN on one side and USER ISDN on the other
(with correct clocking)), then the DEMO application can be used to call out of the channels on
the second port and be answered by the channels on the first port.

Under this configuration the program will automatically continue to dial out on one side and
answer on the other indefinitely, without needind a second system or connection to a digital
PSTN.

p7

© Zentel Telecom Ltd., 2009

The following sections describe each of the individual demo program tasks in more detail.

-o-

p8

© Zentel Telecom Ltd., 2009

Compiling the applications
A batch file has been provided which can be run from a command prompt to compile any of
the demonstration programs. This batch file is called MK.BAT and contains the following
commands:

set INCDIR=..\include;..\common;.

set FUNCDIR=..\common;.

tcl -e %1 %2

The INCDIR environment variable tells the compiler where to find any header files specified by
the $include statement. The FUNCDIR environment variable defines where any external
function (*.FUN) files reside.

This batch file assumes that the Telecom Engine binaries are included in the PATH
environment variable and so to compile any of the programs one simply needs to type one of
the following from the command line one after the other.

mk demo
mk chantask
mk scrdemo
mk command
mk in_ivr_task
mk out_ivr_task

Note that some of these programs are longer than the 100 line limit imposed by the
Evaluation version of the compile. For this reason these programs come pre-compiled, but
a full development dongle is reqired if you wish to modify these source files to make your own
changes.

-o-

p9

© Zentel Telecom Ltd., 2009

Running the demo application
Beneath the DEMO folder where the source resides there is a sub-directory called RUN which
contains a batch file called RUN.BAT.

This batch file contains the following commands:

set TEXDIR=..

del *.log

tex demo

The TEXDIR environment variable specifies the location of the excecutable TEX files which is
this case is the directory above).

The RUN subdirectory also contains the config files that are needed to run the DEMO.
The first configuration file (ACUCFG.CFG) is used by the standard Telecom Engine library files
for the Aculab hardware (CXACULAB.DLL and CXACUDSP.DLL), and this file simply lists the
serial numbers of the Aculab boards in the order that you want to open them. The ports
on these boards will then be opened in turn. The first E1 port on the first signalling board
specified in the ACUCFG.CFG file will become port 0 and will then increase sequentially.
The first voice channel found on the first media board specified in the ACUCFG.CFG file will
become voice channel 1 and will increase sequentially from there.

The second configuration file (DEMO.CFG) is aimed at the DEMO.TEX program and tells the
DEMO.TEX program which channels are active and whether they are inbound or outbound
channels (see DEMO.TES program description).

Assuming that the ACUCFG.CFG and DEMO.CFG files have been correctly configured and that
the Telecom Engine binary files have been included in the PATH environment variable, then
the RUN.BAT will launch the demo application.

-o-

p10

© Zentel Telecom Ltd., 2009

DEMO.TES

DEMO.TES program description
The DEMO.TES program is the 'master' program that is run to start the demonstration
application. The first thing that the DEMO.TES does is to open the DEMO.CFG text file
which defines information for each of the E1 ports that will be used by the demo program.
Each E1 port is known as a trunk and consists of up to 31 bearer channels (30 for ISDN since
there is always one signalling port, SS7 can have any number up to 31 depending on how
many signalling channels there are).

The DEMO.CFG file has the following format:

<Number of trunks>
<trunk1 port num (0..x)>,<trunk1
vector>,<inbound/outbound(0/1)>,<vox_offset>,<ivr_task>
<trunk2 port num (0..x)>,<trunk2
vector>,<inbound/outbound(0/1)>,<vox_offset>,<ivr_task>
etc

For example a valid DEMO.TES file for two inbound trunks would be:

2
0,1111111111111110111111111111111,0,1,in_ivr_task
1,1111111111111110111111111111111,0,31,in_ivr_task

and for two outbound trunks:

2
0,1111111111111110111111111111111,1,1,out_ivr_task
1,1111111111111110111111111111111,1,31,out_ivr_task

and for two inbound and two outbound trunks:

4
0,1111111111111110111111111111111,0,1,in_ivr_task
1,1111111111111110111111111111111,0,31,in_ivr_task
2,1111111111111110111111111111111,1,0,out_ivr_task
3,1111111111111110111111111111111,1,0,out_ivr_task

The first field, <trunk port num>, defines the E1 port number for the trunk ranging from 0
upwards.

The second field, <trunk vector>, is a 31 character channel vector, where each character
represents one of the channels on the E1 port. 1 represents and active bearer channel and 0
represents and inactive bearer channel (e.g. a signalling channel). Since this version of the
demowa written for ISDN then the vectors all have channel 16 excluded since it is used for
signalling in ISDN.

The third field, <inbound/outbound flag>, defines whether channels on the trunk are inbound
or outbound channels. for inbound set this field to 0, for outbound set this field to 1.

p11

© Zentel Telecom Ltd., 2009

The fourth field, <vox_offset>, defines the offset of first voice channel to be used by the first
channel of the E1 trunk. For this demonstration only the inbound channels require a voice
channel (to play a message to the inbound caller). For outbound channels this can be set to
0 to indicate that no voice channel needs to be allocated.

The fifth field, <ivr_task>, defines the name of the task that will be spawned. For inbound
channels the task is only spawned when a call is received on any of the channels on the E1
trunk. For outbound channels the task is spawned automatically after a random period of
time. In this version of the demo program the inbound task should be set to
"IN_IVR_TASK" which simply plays the message "DEMO.VOX" then hangs up. The
outbound task is called OUT_IVR_TASK and sends TCP/IP messages to the CHANTASK
program to control the outbound call after which it pauses a random period of time, then
hangs up. For outbound calls there is no need for a voice channel in this version.

Looking into the source code we can see that after some trivial initialisation the first thing the
DEMO.TES program does is to open the DEMO.CFG file:

 fd=sys_fhopen("DEMO.CFG","rs");
 if(fd < 0)

 errlog("Could not open DEMO.CFG: err=",fd);

 stop;

 endif

It then reads the <number_of_trunks> field using the sys_fhgetline() function call:

 // read the first line from the CFG file

 num_trunks=sys_fhgetline(fd);

The program then spawns the screen handling task (SCRDEMO) passing to it various
parameters to control the look of the screen, including the number of trunks that has just
been read from the DEMO.CFG file:

 // Spawn the screen driver passing:
 // arg1=num_trunks,

 // arg2=left column len,tot_chans

 // arg3=right column len, tot_chans

 var arg2:127;

 var arg3:127;

 arg2="1," & (num_trunks/2*31);

 arg3=((num_trunks/2*31)+1) & "," & (num_trunks/2*31);

 scrtask_pid=task_spawn("SCRDEMO",num_trunks,arg2,arg3);

After spawning the SCRDEMO task the program then sends an initialisation message to it.
This is done using an internal Telecom Engine message (using the CXMSG.DLL library) as
follows (it also waits for a response):

 // Need to send a Screen initialisation message to the screen handler..
 msg_put("SCREEN",SCR_INIT);

 // The SCRDEMO task will send back a TE message containing a single

character ("!")

 // to indicate that the screen has been initialised... so wait for this

before

 // continuing..

 msg_get(60);

Once this is done the DEMO.TES program then enters a loop for each trunk and will read the
trunk configuration lines one at a time and extract the comma delimited fields from it using

p12

© Zentel Telecom Ltd., 2009

the strtok() function from the CXSTRINGS.DLL library. This information is used to spawn a
channel control task (CHANTASK), one for each channel of each trunk. Note also that for
each trunk a message is sent to the screen handler to display information for that trunk (this
will be described in more detail in the SCRDEMO.TES program description):

 // loop through trunks..

 for(trunk=1;trunk<=num_trunks;trunk++)

 // read the next configuration line from the DEMO.CFG file..

 cfg_str=sys_fhgetline(fd);

 if(cfg_str streq "")

 errlog("Invalid DEMO.CFG file (too few lines)");

 stop;

 endif

 // Extract the fields (port,Vector,direction,ivr_task)

 strtok("","");

 port=strtok(cfg_str,",");

 vector=strtok(cfg_str,",");

 tracelog("DEMO: PORT=",port," vector=",vector);

 dir_flag=strtok(cfg_str,",");

 vox_offset=strtok(cfg_str,",");

 ivr_task=strtok(cfg_str,",");

 // Send screen initialisation message for trunk

 msg_put("SCREEN",SCR_TRUNK & "," & (((trunk-1) * 31)+1) & ",31");

 // The SCRDEMO task will send back a message containing a single

character ("!")

 // to indicate that the trunk has been initialised... so wait for this

before

 // continuing..

 msg_get(60);

 adjust=0;

 // For each active channel in the vector mask spawn the channel

controller

 for(chan=1;chan <= 31; chan++,logical_line++)

 // Only spawn channel control task if vector mask for this channel

is 1

 if(substr(vector,chan,1) eq 1)

task_spawn("chantask",logical_line,port,chan,dir_flag,(vox_offset eq

0)?0:vox_offset+chan-(adjust+1),ivr_task);

 else

 // We don't waste a voice channel on inactive E1 ports to

adjust for this

adjust++;

 endif

 endfor

 endfor

Once this has completed then the DEMO program will exit. There should now be one
CHANTASK task running for every active bearer channel defined in the DEMO.CFG. If the
trunk is defined as an inbound trunk then the CHANTASK will simply be waiting for an inbound
call. for outbound channels the outbound IVR task (OUT_IVR_TASK) will be spawned after a
random pause.

-o-

p13

© Zentel Telecom Ltd., 2009

CHANTASK.TES

CHANTASK.TES program description
For every active channel on every trunk defined in the DEMO.CFG file there will be a
CHANTASK task spawned. The CHANTASK.TES is the file containing the source code for
these tasks.

The CHANTASK task will act differently depending upon whether the channel it is controlling
has been defined as an inbound channel or an outbound channel.

For inbound channels the CHANTASK program will simply wait for an inbound call to arrive
after which it will spawn the ivr task specified in the DEMO.CFG file. The inbound ivr task
provided with the demo programs (IN_IVR_TASK) simply plays a message (DEMO.VOX) then
issues a command back to the CHANTASK program instructing it to hang up and wait for the
next call.

For outbound channels the CHANTASK program waits a random amount of time before
spawning the ivr task specified in the DEMO.CFG file. The outbound ivr task provided with
the demo programs (OUT_IVR_TASK) then makes a TCP/IP connection to the CHANTASK
program and sends control messages to it to instruct it to make an outbound call. Once the
outbound call is connected the OUT_IVR_TASK will pause for another random period before
issuing a hangup request.

So in both cases the CHANTASK program will spawn a child task which then communicates
with the CHANTASK program by passing messages. For the inbound side the program
employs internal Telecom engine messages implemented using the CXMSG.DLL function
library whereas the outbound side uses the TCP/IP protocol implemented using the
CXSOCK.DLL library.

After some trivial initialisation the first thing the CHANTASK program does is to obtain the
arguments passed to it by the DEMO.TES master program:

 // Get the passed arguments..
 line=arg(1);

 port=arg(2);

 channel=arg(3);

 in_out_flag=arg(4);

 vox_chan=arg(5);

 ivr_task=arg(6);

The arguments passed down from the DEMO.TES program are as follows: line is the
logical line number (not the physical channel number); port is the aculab E1 port number
(starting from 0); channel is the physical channel number on the E1 port, in_out_flag is set to
0 if this is an inbound channel, 1 if it is an outbound channel; vox_chan is the voice channel
number to use; ivr_task is the name of the child task to spawn to control the inbound or
outbound call.

The next line updates the screen status for the port through the screen handler task. This is
function, str_st1() is in the common function directory:

 // Set the status of the line on the screen to initialising..
 scr_st1(line,"Init");

p14

© Zentel Telecom Ltd., 2009

After this, if this is an outbound channel, the program attempts to open a listening port
through which it will received socket connections and then the messages used to control the
outbound calling protocol. A unique port number is obtained by adding the task ID of the
CHANTASK task to a PORT_OFFS which has been defined as 6000 in the declaration section at
the top of the program:

 // If this is an outbound channel then create a listening socket to receive
commands//

 if(in_out_flag <> DIR_IN_ONLY)

 // Use the task ID and the PORT_OFFS to generate a unique listening

port for this channel

 l_sock=Slisten(PORT_OFFS+task_getpid());

if(l_sock < 0)

 errlog(serv_name & ": Failed to get listening socket: on port

",(PORT_OFFS+task_getpid())," err=",l_sock);

 stop;

endif

debug(serv_name & ": line" & line & " GOT LISTENING SOCKET=" & l_sock & "

on port=" & (PORT_OFFS+task_getpid()));

 endif

The Slisten() call returns a listening socket when can then be used to receive inbound socet
connections from other tasks.

After this the H.100 (or SC bus routing is done). If a voice channel is specified then the
voice channel is made to listen to the network channel and the network channel is made to
listen to the voice channel in a full duplex connection via the H.100 bus as follows:

###

 ############### INITIAL SC/H.100 BUS ROUTING

################################

###

 // Stop E1 channel from listening to anything...

 CCunlisten(port,channel);

 if(vox_chan > 0)

 // Stop voice channel from listening to anything

 SMunlisten(vox_chan);

 // Make vox listen to net port

 SMlisten(vox_chan,CCgetslot(port,channel));

 // Make net port listen to vox

 CClisten(port,channel,SMgetslot(vox_chan));

 endif

 // Get the h.100 slot of the E1 port for use later..

 slot_no=CCgetslot(port,channel);

###

###

Next the channel state variable is set and the screen is updated again with the new channel
status through the scr_st1() function:

 pstn_call_flag=PSTN_CALL_IDLE; // Set channel status to indicate there
is no outbound call at the moment

 // Update the screen..

 if(in_out_flag eq DIR_IN_ONLY)

p15

© Zentel Telecom Ltd., 2009

 scr_st1(line,"Wait");

 scr_print(line,"","Waiting For Line Seizure....","");

 else if(in_out_flag eq DIR_OUT_ONLY)

 scr_st1(line,"Idle");

 else

 scr_st1(line,"InOut");

 endif endif

If the channel is an inbound channel the it is initialised ready to accept and incoming call with
the CCenablein() function from the aculab call control library (CXACULAB.DLL)

###

 ######## INITIALISE THE CHANNEL READY TO MAKE/RECEIVE A CALL

################

###

 if(in_out_flag <> DIR_OUT_ONLY)

debug(serv_name & ": ENABLING INBOUND CALLS ON Logical CHANNEL=" & line);

// Enable incoming calls on this channel

if (CCenablein(port,channel) < 0)

 errlog(serv_name & ": An error occurred enabling inbound calls on

port=",port," channel= ",channel);

 stop;

endif

 endif

###

###

If the channel is an outbound channel then the outbound IVR task is then spawned which will
make a TCP/IP connection to this CHANTASK task and issue commands to initiate the
outbound call:

###

 ######## IF THIS IS AN OUTBOUND CHANNEL THEN WE SPAWN OUTBOUND TASK

#########

###

 if(in_out_flag <> DIR_IN_ONLY)

 task_spawn(ivr_task,line,port,channel,vox_chan);

 endif

After this the program goes into a loop calling the check_inbound() and check_outbound()
functions alternatively. The reason for the loop is to make provision to allow bi-directional
channels in the future. However for this version the channel must be only inbound or
outbound not both, so the loop is redundant at present:

 // now loop checking for inbound calls or outbound socket connects
 while(1)

check_outbound();

check_inbound();

task_sleep(2); // Stop tight loop to allow

 endwhile

p16

© Zentel Telecom Ltd., 2009

-o-

p17

© Zentel Telecom Ltd., 2009

The check_outbound() function
The following section describes the check_outbound() function which polls for inbound socket
connections and then receives the TCP/IP messages that control the outbound call. These
TCP/IP messages implement a simplified outbound call protocol implemented using text based
messages.

All the TCP/IP messages sent and received by the program use the two utility functions:
TCPsend() and TCPrecv() which are defined in the common function directory. All the
messages sent over the socket connection are terminated with a carriage return character
(ASCII code 13 (0x0d)) and the TCPsend() and TCPrecv() take care of adding this or using it
to distinguish the end of a received message repsectively.

The first statement of the check_outbound() function checks whether the channel is an
outbound channel, and if not, the function simply returns immediately:

 if(in_out_flag eq DIR_IN_ONLY)
return 0;

 endif

After this the function checks for an inbound socket connection using the Saccept() function
call. This function will return -3 if there are no pending socket connections, otherwise it will
return an incoming socket handle. Note that is the channel is outbound only then the call
will 'block' for 3600 seconds waiting for an incoming connection, but if the channel is
bi-directional (then the call will not block and will return immediately (note that although
bi-direction channels are provided for here they have not been fully implemented in this
version). Here is the code for the check for an inbound socket connection:

 // If this is outbound only then we can block for a while (1 hr)
 if(in_out_flag eq DIR_OUT_ONLY)

 debug(serv_name & "Line " & line & " Going into BLOCKING

Saccept()...");

 # Wait up to 1 hourfor inbound connection

 a_sock=Saccept(l_sock,3600);

 debug(serv_name & "Line " & line & " Returned from BLOCKING Saccept()

with sock=" &a_sock);

 // otherwise assume bi-directional channel so just do a quick check for

socket connection

 else

 a_sock=Saccept(l_sock);

 endif

 if(a_sock < 0)

 // Check for error (hopefully we will never see this since it it not

clear if we could recover)

 if(a_sock <> EWOULDBLK)

 errlog(serv_name & ": Error in Saccept attempt to get another

listening socket");

 Sclose(l_sock);

 // Attempt to recover (by obtaining anotherlistening socket..)

 while(1)

 l_sock=Slisten(PORT_OFFS+task_getpid());

 if(l_sock < 0)

 errlog(serv_name & ": Error listening on port " &

(PORT_OFFS+getpid()) & " retrying...");

else

 debug(serv_name & ": Listening socket is " & l_sock);

 break;

endif

 sleep(5);

 endwhile

p18

© Zentel Telecom Ltd., 2009

 endif

 return 0;

 // else we got a inbound socket connection (to start an outbound call)

 else

 debug(serv_name & ": line=" & line & " RECEIVED INBOUND SOCKET

CONNECTION (TO START OUTBOUND CALL)");

 pstn_call_flag=PSTN_CALL_START; # We now have an active connection

 endif

If an inbound socket connection is received then the pstn_call_flag status is set to
PSTN_CALL_START and the function goes into a loop waiting for inbound messages to arrive
to control the issue of an outbound call on the channel. The messages to control an
outbound call have been implemented using a simple text based protocol where the message
format is as follows:

<Command>,<Session ID>,<Data>

Where <Command> can be one of the following as defined in DEMO.INC from the include
sub-directory:

// Message commands for driving outbound calls.. Client-> Chantask
const C_PS_DIAL="60";

const C_PS_RELEASE="61";

const C_PS_SETUP="70";

// Response commands indicating call progress.. Chantask->Client

const C_PS_ALERTING="62";

const C_PS_PROCEEDING="63";

const C_PS_PROGRESSING="64";

const C_PS_DISCONNECTED="65";

const C_PS_TASKFAILURE="66";

const C_PS_CONNECTED="67";

const C_PS_ATTACH="68";

const C_PS_DETACH="69";

const C_PS_SETRESP="71";

const C_PS_NOTIFY="73";

The program then enters a loop, alternatively checking for received messages from the client
task and checking for events on the outbound channel (only after the dial has been initiated).
 There are three possible messages that can be received from the client side:

C_PS_SETUP - Exchanges some information about the H.100 bus slots for routing purposes
prior to dialing out.
C_PS_DIAL - Initiates the actual outbound call
C_PS_RELEASE - Request hangup and release of the outbound call.

The code for this loop is as follows (with some detail removed and replaced with pseudo
code):

###

 # Loop looking for messages - stay in this loop until either socket closed

or dial session complete

###

 while(1)

 // Go check socket for incoming message..

 // Use TCPread to get packet all in one go (with overlapped mulitple

messages stored in omsg)

 rc=TCPread(a_sock,&msg,&omsg,0);

 // Check for lost socket

p19

© Zentel Telecom Ltd., 2009

 if(rc < 0)

 // Make it look like a release

 rcvd_sess = ps_session;

 msg=C_PS_RELEASE & "," & NORMAL_CLEARING;

 strtok("","");

 command=strtok(msg,",");

 else if(rc eq 1)

 # extract the command

 strtok("","");

 command=strtok(msg,",");

 rcvd_sess = ps_session;

 endif endif

 # if we get a message

 if(rc eq 1)

 switch(command)

// C_PS_SETUP ,session, slot_type, slot_num ,offered_vox_chan [,

extra_parms]

// C_PS_SETRESP,result, slot_type, slot_num ,vox_chan_used,

defer_vox_routing_flag

case C_PS_SETUP:

 etc....

 //

C_PS_DIAL,session,dest_tel,caller_ID,num_type,cli_pass,idd_prefix[,dest_subaddr

, CLI_subaddr] case C_PS_DIAL:

 etc....

 // C_PS_RELEASE,session,<cause>

case C_PS_RELEASE:

 etc....

 endswitch

 endif

 // If a dial has been initiated

 if(pstn_call_flag eq PSTN_CALL_PROGRESS)

 EventCode = CCstate(port, channel);

 if (LastEventCode <> EventCode)

 send back call progress message..

 etc..

 endif

 endif

 endwhile

The first message received from the client task is a C_PS_SETUP message which contains the
following data:

70,<slot_type>,<slot_num>,<offered_vox_chan>

 The <slot_type> defines whether switching is to be done over a local logical H.100 bus or
some other external inter-chassis switching type (only local bus TS_TYPE_LOGICAL is
supported by the demo (see demo.inc for these definitions)).

 The <slot num> is the handle for the H.100 timeslot
 The <offered_vox_chan> is only used by protocols that require a voice channel (such as

R2/MF) and is not needed by the demo.

In a real application the <setup> message would allow for another channel (voice or E1
channel) to be automatically connected to the outbound call (Either to connect two
conversations together or to play a message to the answered party). However in the demo
program the setup message is largely redundant.

In response the CHANTASK sends back a C_PS_SETRESP message:

71,<result code>, <slot type>, <local_bus_slot> ,<vox_chan_used>,
<defer_vox_routing_flag>

p20

© Zentel Telecom Ltd., 2009

 The <result code> is 0 for sucessful setup or a negative error code (E.g. if <slot_type> not
supports)

 The <local_bus_sot> is the h.100 (or external bus slot) that the outbound E1 channel has
been nailed to.

 The <vox_chan_used> is the actual voice channel that was used (only applies to R2 etc
channels)

 The <defer_routing_flag> is set to 1 if the inbound channel should defer listening to the
outbound channel until the first call progress message (e.g.C_PS_PROCEEDING,
C_PS_ALERTING etc) is received. This will happen in some protocols (like R2) where the
inbound caller would hear the exchange of R2 MF tones if the routing was done
immediately after the C_PS_SETRESP message was received. For ISDN, SS7 etc
<defer_routing_flag> is set to 0 so the H.100 bus routing connection can be made
immediately.

The next message recieved from the client task would be a C_PS_DIAL message which
instructs the outbound channel to dial a given number. The format of this message is as
follows:

60,<dest_tel>,<caller_ID>,<num_type>,<cli_pass>,<idd_prefix>[,<dest_subaddr>,<CLI_su
baddr>

 The <dest_del> is the destination telephone number
 The <caller ID> is the caller id passed from the client application
 The <num_type> should be set to one of C_TYPE_LOCAL, C_TYPE_NATIONAL, or

C_TYPE_INTERNATIONAL as defined in DEMO.INC
 <cli_pass> should be set to 1 to pass the given caller ID or 0 to block caller ID
 The <idd_prefex> will be set to the prefix used for international calls (Eg 00 or 010 etc)
 The <dest_subaddr> and <CLI_subaddr> allow for additional address information to be

sent (e.g. extension)

This message causes the program to actually initiate an outbound call on the E1 channel.
The code for this is as follows:

 case C_PS_DIAL:

 // Check that the pstn_call_flag is in the correct state to receive a

C_PS_DIAL message

 if(pstn_call_flag eq PSTN_CALL_PROGRESS or pstn_call_flag eq

PSTN_CALL_MONITOR)

 errlog(serv_name,": ERROR - GOT C_PS_DIAL DURING ALREADY ACTIVE

DIAL");

 else

 // Extract all the fields from the message

 dest_tel_no=strtok(msg,",");

 caller_id=strtok(msg,",");

 dest_num_type=strtok(msg,",")

 cli_pass=strtok(msg,",");

 idd_prefix=strtok(msg,",");

 dest_sub_addr=strtok(msg,",");

 caller_sub_addr=strtok(msg,",");

 ########## Normalise Destination Telephone number and set number

type ######

 // if the destination number starts with idd_prefix then remove it

and

 if(substr(dest_tel_no,1,length(idd_prefix)) streq idd_prefix)

 dest_tel_no=substr(dest_tel_no,length(idd_prefix)+1);

 debug(serv_name & ": Stripping IDD prefix from dest num gives "

& dest_tel_no);

 dest_num_type=C_TYPE_INTERNATIONAL;

 endif

 // Assume its a national number if it is not specified

 if(dest_num_type streq "")

 dest_num_type=C_TYPE_NATIONAL;

p21

© Zentel Telecom Ltd., 2009

 endif

 ######### Convert internal number type to the Aculab ISDN number

type and plan number plan

 if(dest_num_type eq C_TYPE INTERNATIONAL)

 dest_ntype=NT_INTERNATIONAL;

 dest_nplan=NP_UNKNOWN; // Hardcode this for now..

 else if(dest_ntype eq NT_NATIONAL)

 dest_ntype=NT_NATIONAL;

 dest_nplan=NP_UNKNOWN; // Hardcode this for now..

 else if(dest_ntype eq NT_SUBSCRIBER_NUMBER)

 dest_ntype=NT_SUBSCRIBER_NUMBER;

 dest_nplan=NP_UNKNOWN; // Hardcode this for now..

 // For any other type assume national

 else

 dest_ntype=NT_NATIONAL;

 dest_nplan=NP_UNKNOWN; // Hardcode this for now..

 endif endif endif

 debug(serv_name & ": CALLER ID=" & caller_id & " cli_pass=" &

cli_pass);

 ######### Set the override caller ID (the one actually being sent

to the network) depending on the cli_pass flag

 // The cli_pass flag defines how the caller ID is passed (0=None,

1=Use one in message,2=use default)

 if(not cli_pass)

 o_caller_id="";

 else if(cli_pass eq 1)

 o_caller_id=caller_id; # Use the passed CLI

 else

 o_caller_id=default_cid; # Use the default CID

 endif endif

 ######### Update the status on the screen

 scr_st2(line,11,"DIAL");

 scr_print(line,"","CID=" & o_caller_id & " TEL=" & dest_tel_no

,"");

 ######### Setup the call and do the dial..

CCsetparm(port,channel,PARM_TYPE_OUT,CP_Q931_DEST_NUMBERING_TYPE,dest_ntype);

CCsetparm(port,channel,PARM_TYPE_OUT,CP_Q931_DEST_NUMBERING_PLAN,dest_nplan);

 // Hard code these for now..

 CCsetparm(port, channel,PARM_TYPE_OUT,

CP_Q931_ORIG_NUMBERING_TYPE, NT_NATIONAL); # hard code for now

 CCsetparm(port, channel,PARM_TYPE_OUT,

CP_Q931_ORIG_NUMBERING_PLAN, NP_UNKNOWN); # hard code for now

 connected_flag=0;

 debug(serv_name & "Now making call, number = '" & dest_tel_no & "'

cid=" & o_caller_id & " type=" & dest_ntype & " plan=" & dest_nplan);

 rc=CCmkcall(port, channel, dest_tel_no,o_caller_id);

 ########## Clear the last event received variable and change the

pstn_call_flag status

 LastEventCode = "";

 pstn_call_flag=PSTN_CALL_PROGRESS; # We now have a call in

progress

 endif

The last line of this code sets the pstn_call_flag to PSTN_CALL_PROGRESS so that the second
part of the loop will now check for changes in the state of the channel and pass these changes
back to the client task as call progress messages. Before looking at that code there is one

p22

© Zentel Telecom Ltd., 2009

more case statement which handles the receipt of a C_PS_RELEASE statement. Note that if
the TCP/IP socket is unexpectedly closed by the client then the program simulates the receipt
of a C_PS_RELEASE statement (see the code at the top of the loop above). Here's where
the C_PS_RELEASE is handled:

 case C_PS_RELEASE:

 # Check for bad message

 if(not pstn_call_flag)

 errlog(serv_name,": ERROR - RECEIVED C_PS_RELEASE MESSAGE WITH NO

ACTIVE DIAL");

 else

 # If call is in progress then hangup the call

 if(pstn_call_flag eq PSTN_CALL_PROGRESS or pstn_call_flag eq

PSTN_CALL_MONITOR)

 CCdisconnect(port,channel,LC_NORMAL);

 connected_flag=0;

 wait_idle_then_release();

 // handle bi-directional channel (future use)

 if(in_out_flag <> DIR_OUT_ONLY)

 CCenablein(port,channel);

 endif

 endif

 // Update the screen with new status

 if(in_out_flag eq DIR_OUT_ONLY)

 scr_st1(line,"Idle");

 else

 scr_st1(line,"InOut");

 endif

 // If H.100 routing has been done then remove routing

 if(link_flag)

 // Stop network from listening to anything...

 CCunlisten(port,channel);

 // reconnect any voice channel to the E1 channel

 if(vox_chan > 0)

 SMunlisten(vox_chan);

 # Make vox listen to net again

 SMlisten(vox_chan,CCgetslot(port,channel));

 endif

 link_flag=0;

 endif

 // disconnect the accepted socket

 Sclose(a_sock);

 pstn_call_flag = PSTN_CALL_IDLE;

 return 0;

 endif

So the C_PS_RELEASE message, once received, will cause the call to be disconnected (if it
hasn't already) then the call session is released, the H.100 bus routing is reset, the screen is
updated and the inbound TCP/IP socket is closed. The wait_idle_then_release() function,
does what it says, i.e it waits for the channel state to go IDLE then it calls the CCrelease()
function. This is done after a CCdisconnect() has been issued on the channel:

func wait_idle_then_release()

dec

 var firststate:8;

 var state:8;

end

 firststate=CCstate(port,channel);

 if(firststate <> CS_IDLE)

p23

© Zentel Telecom Ltd., 2009

 // loop waiting for channel to go idle

 while(1)

 CCwait(port,channel,CC_WAIT_FOREVER,&state,firststate);

 if(state eq CS_IDLE)

 break;

 else

 firststate=state;

 endif

 // prevent tight loop so window messages can be processed

 task_sleep(1);

 endwhile

 end

 // State is IDLE so release..

 CCrelease(port,channel);

endfunc

Once the C_PS_DIAL message has been received and an outbound call is in progress then the
second part of the loop checks for changes in the state of the call on the channel and passes
these changes to the client task as call progress messages (C_PS_ALERTING,
C_PS_PROCEEDING etc). The code for this is as follows:

 ############ POLL THE CHANNEL TO CHECK FOR EVENTS ##########################
 if(pstn_call_flag eq PSTN_CALL_PROGRESS)

 EventCode = CCstate(port, channel);

 // check is new event has been received

 if (LastEventCode <> EventCode)

 LastEventCode = EventCode;

 ldatetime = sys_date() & "," & sys_time();

 switch(EventCode)

 case CS_CALL_CONNECTED: # call answered

 ########### Get the start date and time of the

call (for working out duration later)

 ssdate=sys_date();

 sstime=sys_time();

 connected_flag=1;

 ########### Update the screen

status..##############

 debug(serv_name & ": Call state CONNECTED");

 scr_st2(line,2,"ANSW");

 ########### Send back C_PS_CONNECTED message.

######

 msg = C_PS_CONNECTED & "," & EventData & "," &

ldatetime;

 rc = TCPsend(a_sock,msg);

 ########### If BUS slot was given in SETUP message

then do bus connection here!

 if(tslot_type eq TS_TYPE_SC)

 debug(serv_name & ": SCB: making port=" &

port & " channel=" & channel & " listen to (sent) tslot_no=" & tslot_no);

 # Don't route timesslot if -1 specified

 if(tslot_no >= 0)

 CCunlisten(port,channel);

 logical_bus_slot=24*4096+tslot_no;

 CClisten(port,channel,logical_bus_slot);

 link_flag=1;

 endif

 else if(tslot_type eq TS_TYPE_LOGICAL)

p24

© Zentel Telecom Ltd., 2009

 debug(serv_name & ": !!!LOGICAL: making port="

& port & " channel=" & channel & " listen to (sent) tslot_no=" & tslot_no);

 if(tslot_no >=0)

 CCunlisten(port,channel);

 CClisten(port,channel,tslot_no);

 link_flag=1;

 endif

 else

 errlog(serv_name,"UNSUPPORTED BUS

TYPE=",tslot_type);

 endif endif

 # This shouldn't happen as we should get a DISCONNECT

first - handle it just in case

 case CS_IDLE:

 cause=NORMAL_CLEARING;

 debug(serv_name & ": Call state IDLE WITHOUT

DISCONNECT!");

 if(ssdate streq "")

 call_duration = 0;

 else

 call_duration =

timesub(date(),time(),ssdate,sstime);

 endif

 scr_st2(line,3,"HGUP");

 ssdate = "";

 // Send back C_PS_DISCONNECT message to

controlling task

 msg = C_PS_DISCONNECTED & "," & cause & "," &

ldatetime & "," & call_duration;

 rc = TCPsend(a_sock,msg);

 case CS_REMOTE_DISCONNECT:

 debug(serv_name & ": Call state DISCONNECTED");

 cause=CCgetcause(port,channel,1);

 debug(serv_name & " DISCONNECTED gave cause=" &

cause);

 if(ssdate streq "")

 call_duration = 0;

 else

 call_duration =

timesub(date(),time(),ssdate,sstime);

 endif

 scr_st2(line,3,"HGUP");

 ssdate = "";

 // Send back C_PS_DISCONNECT message to

controlling task

 msg = C_PS_DISCONNECTED & "," & cause & "," &

ldatetime & "," & call_duration;

 rc = TCPsend(a_sock,msg);

 case CS_WAIT_FOR_OUTGOING:

 debug(serv_name & ": Call state

WAIT_FOR_OUTGOING");

 case CS_OUTGOING_RINGING: # destination

terminal got call request

 debug(serv_name & ": Call state OUTGOING RINGING

received");

 EventData=0;

 scr_st2(line,12,"RING");

 msg = C_PS_ALERTING & "," & EventData & "," &

ldatetime;

 rc = TCPsend(a_sock,msg);

 case CS_PROGRESS: # received progress event

 debug(serv_name & ": Call state PROGRESSING

p25

© Zentel Telecom Ltd., 2009

received");

 EventData=0;

 msg = C_PS_PROGRESSING & "," & EventData & "," &

ldatetime;

 rc = TCPsend(a_sock,msg);

 case CS_OUTGOING_PROCEEDING: # network accepted

call request

 debug(serv_name & ": Call state PROCEEDING

received");

 EventData=0;

 msg = C_PS_PROCEEDING & "," & EventData & "," &

ldatetime;

 rc = TCPsend(a_sock,msg);

 case CS_NOTIFY:

 debug(serv_name & ": Call state NOTIFY received");

 EventData=0;

 msg = C_PS_NOTIFY & "," & EventData & "," &

ldatetime;

 rc = TCPsend(a_sock,msg);

 default:

 errlog(serv_name & "Unexpected event ", EventCode);

 endswitch

 endif

 endif

So in all cases above, once a change in state is received then a call progress message is sent
back to the client task.

All the call progress messages have the format:

<Progress type>,<Event Data>,<timestamp: DDMMYYHHMMSS>

With the exception of the C_PS_DISCONNECTED message which has the call duration
appended as follows:

C_PS_DISCONNECTED,<Event Data>,<timestamp: DDMMYYHHMMSS>,<Call duration>

For calls that did not get answered then the duration will be set to 0.

If the channel state is changed to CS_CONNECTED then any H.100 routing is done to connect
the conversations (only if bus information was supplied in the C_PS_SETUP message) and the
screen is updated.

If the channel state is changed to CS_DISCONNECTED then the call duration is calculated (if
any) and the screen status is also updated.

-o-

p26

© Zentel Telecom Ltd., 2009

The check_inbound() function
The following section describes the check_inbound() function which waits for an inbound call
on the E1 channel and once a call has been received it will spawn the IVR task that will then
play messages and take DTMF digits etc. The IVR task that is spawned is specified in the
DEMO.CFG file and by default is the IN_IVR_TASK.TES program supplied with the demo
application.

After spawning the IVR task the program then goes into a loop alternatively waiting for a
message from the IVR task or for a hangup signal on the E1 channel.

The first thing the function does is check whether the channel is an outbound only channel
and if so it simply returns:

 // Return immediately if this is an outbound only channel
 if(in_out_flag eq DIR_OUT_ONLY)

return 0;
 endif

Then the function goes into a loop waiting for an inbound call to arrive at the channel. If
the channel is inbound then the CCwait() function will block waiting for an inbound call.
There is also code here to handle the cased of a bi-directional channel in which case the
CCstate() call is used to poll the channel to see if there is an outbound call and the function
will return back to the amin loop if not:

 // If this is an inbound channel then we can block task and wait
 if(in_out_flag eq DIR_IN_ONLY)

 // Loop waiting for incoming call

 while(1)

 debug(serv_name & " About to CCWait(FOREVER)");

 x=CCwait(port,channel,CC_WAIT_FOREVER,&event);

 debug(serv_name & " CCWait() returned with event=" & event);

 if(x>0)

 if(event eq CS_INCOMING_CALL_DET)

 break;

 else

 applog(serv_name & ": port=",port," channel=",channel," got unexpected event=",event);

 endif

 // prevent tight loop

 task_sleep(1);

 endif

 endwhile

 # otherwise we poll for incoming calls

 else

 # Check to see if there is an incoming call.

 if (CCstate(port,channel) <> CS_INCOMING_CALL_DET)

 return 0;

 endif

 endif

If an inbound call was detected by the channel state becoming CS_INCOMING_CALL_DET then
the DID and CLI are extracted, the screen updated and the call is accepted. In this version
of the demo there is no attempt to inspect the CLI or DID make a decision about which IVR
task to spawn or whether to reject the call. Instead the call is always accepted with the
CCaccept() function:

 // Get ANI and DNIS .

p27

© Zentel Telecom Ltd., 2009

 errctl(1);

 CCgetparm(port,channel,CP_ORIGINATING_ADDR,&ANI);

 errctl(0);

 CCgetparm(port,channel,CP_DESTINATION_ADDR,&did);

 debug(serv_name & " DID=" & did & " CID=" & ANI);

 scr_print(line,"","DID='" & did & "' CID='" & ANI & "'","");

 // In DEMO we don't check DID or ANI we just answer the call

 x=CCaccept(port, channel);

 if(x < 0)

 errlog(serv_name & " Port=",port," channel=",channel," CCaccept failed.. releasing the call");

 CCdisconnect(port, channel, LC_CALL_REJECTED);

 wait_idle_then_release();

 # re-enable inbound calls

 debug(serv_name & "Doing Enable in on port=" & port & " channel=" & channel);

 x=CCenablein(port,channel);

 // Reseting the screen

 if(in_out_flag eq DIR_IN_ONLY)

 scr_st1(line,"Wait");

 scr_print(line,"","Waiting For Line Seizure....","");

 else if(in_out_flag eq DIR_OUT_ONLY)

 scr_st1(line,"Idle");

 else

 scr_st1(line,"InOut");

 endif endif

 return -1;

 endif

Once the call has been accepted then the IVR task specified in the DEMO.CFG (passed down
as an argument from DEMO.TES) is spawned, and the screen status is updated. If the
program could not spawn the IVR application then the channel is reset:

 ###################### Spawn INBOUND IVR TASK ####################
 child_pid=task_spawn(ivr_task,line,port,channel,vox_chan);

 // If we couldn't spawn the child task then release the call ..

 if(child_pid < 0)

 errlog(serv_name & " Port=",port," channel=",channel," CCaccept failed.. releasing the call");

 CCdisconnect(port, channel, LC_CALL_REJECTED);

 wait_idle_then_release();

 # re-enable inbound calls

 debug(serv_name & "Doing Enable in on port=" & port & " channel=" & channel);

 x=CCenablein(port,channel);

 // Reseting the screen

 if(in_out_flag eq DIR_IN_ONLY)

 scr_st1(line,"Wait");

 scr_print(line,"","Waiting For Line Seizure....","");

 else if(in_out_flag eq DIR_OUT_ONLY)

 scr_st1(line,"Idle");

 else

 scr_st1(line,"InOut");

 endif endif

 return -1;

 endif

 scr_st2(line,"INV",ivr_task);

p28

© Zentel Telecom Ltd., 2009

Next the function calls the await_msgs() function, which loops waiting for either a hangup
signal on the E1 channel or a message from the IVR task. In this case the messages
received from the IVR task are passed using the Telecom Engine Internal messaging functions
from the CXMSG.DLL library. Here is the code for this loop:

 // Loop forever waiting for messages and/or hangup signal
 while(1)

 // check for disconnect

 a_x=CCstate(port,channel);

 if(a_x eq CS_REMOTE_DISCONNECT)

 task_hangup(a_pid);

 debug(serv_name & " Detected hangup on Line " & line & " Issued task hangup on pid=" & a_pid);

 endif

 a_msg=msg_get(0);

 // IF we didn't get anything for one hour this looks suspicious (IVR task hung?)

 // In this version just set the status to "------" in red as an alert

 if(a_msg streq "")

 if(sys_tmrsecs() >= 3600)

 scr_st2(line,12,"-----");

 sys_tmrstart();

 endif

 sleep(3);

 continue;

 endif

 // Extract fields from received message..

 strtok("","");

 a_cmd=strtok(a_msg,",");

 a_cause=strtok(a_msg,",");

 switch(a_cmd)

 // Hangup (and go blocking?? (Depends on protocol))

 case GEN_HANGUP:

debug(serv_name & " Received GEN_HANGUP message on Line " & line);

CCdisconnect(port, channel, a_cause,1);

 a_hflag=1;

 case GEN_RESTART:

debug(serv_name & " GENERIC: received GEN_RESTART message on Line " & line);

Send restart acknowlegment...

msg_put(msg_pid(),GEN_ACK);

 if(a_hflag eq 0)

 CCdisconnect(port, channel, a_cause,1);

 a_hflag=1;

 endif

Clear any DTMF digits

if(vox_chan)

 SMclrtones(vox_chan);

 endif

// Reset the scbus routing in case it was changed...

CCunlisten(port,channel);

 if(vox_chan > 0)

 SMunlisten(vox_chan);

 SMlisten(vox_chan,CCgetslot(port,channel));

 endif

 wait_idle_then_release();

 # Do we need to re-enable inbound calls?

 if(in_out_flag <> DIR_OUT_ONLY)

 debug(serv_name & "Doing Enable in on port=" & port & " channel=" & channel);

p29

© Zentel Telecom Ltd., 2009

 CCenablein(port,channel);

 endif

 // Reseting the screen

 if(in_out_flag eq DIR_IN_ONLY)

 scr_st1(line,"Wait");

 scr_print(line,"","Waiting For Line Seizure....","");

 else if(in_out_flag eq DIR_OUT_ONLY)

 scr_st1(line,"Idle");

 else

 scr_st1(line,"InOut");

 endif endif

return 0;

 default:

 errlog(serv_name & ": REceive invalid protocol message='" & a_msg & "'");

 endswitch

 task_sleep(1); # prevent tight looping

 endwhile

The two messages that can be received are:

GEN_HANGUP - this causes the channel to be disconnected
GEN_RESTART - this causes the channel to be released and made ready to accept a new
inbound call.

The wait_idle_then_release() function is described above in the description of the
check_outbound() function.

-o-

p30

© Zentel Telecom Ltd., 2009

OUT_IVR_TASK.TES

OUT_IVR_TASK program description
The OUT_IVR_TASK.TES program is the client program that takes control of an outbound
channel and causes a outbound call to be dialled on that channel using the simplified internal
TCP/IP protocol described above in the CHANTASK.TES program description.

After initialisation the program simply pauses a random amount of time between 10 and 90
seconds before connecting to the CHANTASK task that is in charge of the channel and issuing
a request for an outbound call to be initiated on the channel. Once connected the program
will again pause a random amount of time between 10 and 90 seconds before issuing a
hangup request. The program will then go back to the beginning and start the sequence
again.

Therefore for outbound channels the demo application will continuously dial out on those
channels at random intervals until the program is terminated.

After some trivial initalisation the first part of the code retrieves the arguments passed down
from the CHANTASK program, which provides information about which channel the task is in
control of:

 // Get the passed arguments..
 serv_name=arg(0);

 line=arg(1);

 port=arg(2);

 channel=arg(3);

 vox_chan=arg(4);

Next the program retrieves the process ID of the parent CHANTASK task so that the TCP/IP
port can be calculated (the listening port will be 7000 + taskID). It the obtains a random
number and pauses for this amount of seconds:

 // Get the task ID of parent (used to get the listen port of channel task)
 parent_pid=task_parentid();

 // Pause for a random number of seconds between 1 and 90

 rnd_seed();

 int pause_secs;

 pause_secs=rand(10,90);

 debug(serv_name & "About to pause for " & pause_secs & " seconds..");

 // Pause for this number of seconds

 task_sleep(pause_secs*10);

The rnd_seed() and rand() functions are simple pseudo random number generator functions
found in the common function directory.

Next the program calls the outbound call setup sequence:

 // Now initiate the call seup-up sequence..
 x=out_setup();

 if(x < 0)

 // Force ourselve into onsignal

 task_hangup(task_getpid());

 endif

p31

© Zentel Telecom Ltd., 2009

The out_setup() function initiates the setup sequence which consists of connecting to the
parent CHANTASK task that is in charge of the outbound channel, and exchanging the
C_PS_SETUP and C_PS_SETRESP messages. A more detailed description of the
out_setup() function will be given later. Note that if an error occurs then the task_hangup()
function is called which forces the program to jump onto the onsignal function to clear down
the call.

After the setup seqence has completed then the dial sequence is started through the
out_dial() function:

 // Now send the dial request to the channel task
 x=out_dial("0123456789","0987654321");

 if(x < 0)

 task_hangup(task_getpid());

 endif

This out_dial() simply sends the C_PS_DIAL message to the CHANTASK task (the out_dial()
function will be described later). Again, any error results in the task_hangup() function
forcing the program to jump into the onsignal function.

Next a loop is entered waiting for call progress messages to be received from the CHANTASK
task showing the outbound call in progress. The out_progress() function simply waits for
TCP/IP messages using the TCPread() function and will be described later. The loop will
be broken once the C_PS_CONNECTED message is received to indicate that the outbound call
has been answered. If a C_PS_DISCONNECT message is received then task_hangup()
forces a jump to onsignal to clear down the call.

 // Loop getting call progress from outbound channel
 while(1)

 x=out_progress(&cp_type,&cp_data,&cp_date,&cp_time,&cp_duration);

 if(x < 0)

 task_hangup(task_getpid());

 endif

 if(cp_type eq C_PS_CONNECTED)

 break;

 else if(cp_type eq C_PS_DISCONNECTED)

 task_hangup(task_getpid());

 endif endif

 // Prevent tight loop

 task_sleep(1);

 endwhile

The obtains another random number of seconds and then loops waiting for this number of
seconds to expire or a C_PS_DISCONNECT message to be received over the TCP/IP connection
from the CHANTASK task:

 // Get a random number of seconds to pause before hanging up...
 pause_secs=rand(10,90);

 tmr_start();

 // Loop waiting for hangup indication or timeout

 while(1)

 // check for timer..

 if(tmr_secs() > pause_secs)

 task_hangup(task_getpid());

 endif

 x=out_progress(&cp_type,&cp_data,&cp_date,&cp_time,&cp_duration);

p32

© Zentel Telecom Ltd., 2009

 if(x < 0)

 task_hangup(task_getpid());

 endif

 if(cp_type eq C_PS_DISCONNECTED)

 task_hangup(task_getpid());

 endif

 // Prevent tight loop

 task_sleep(1);

 endwhile

endmain

The onsignal function (which is jumped to whenever as task_hagup() function is called)
provides a single restart point for the program, when the outbbound call is released and the
program is restarted ready to initiate another dial on the outbound channel. The
out_release() carries out the release of the outbound call and will be described later:

// This will be jumped to as soon as hangup is received..

onsignal

 // Release the outbound call

 out_release();

 // end the application

 applog("Restarting the application");

 restart;

endonsignal

The following sections describe in more detail the following functions used above:

out_setup()
out_dial()
out_progress()
out_release()

-o-

p33

© Zentel Telecom Ltd., 2009

out_setup() function description
The out_setup() function is responsible for establishing a TCP/IP connection to the CHANTASK
task and to exchange the C_PS_SETUP and C_PS_SETRESP messages. Although the
exchange of these messages is largely redundant in the demo application (since we are not
connecting two conversations together) it is still useful to look at the function code tio
understand how the socket libary works:

First the Sconnect() call is used to make a TCP/IP connection and will return either a negative
error code or a connecting socket. The function will return immediately, even though the
connection might not have been fully established, so the Scheck() function used to check for
when the connection is fully established (or an error occurs).

##

Setup the Outbound call by making socket connection and then sending

the initial setup message to exchange information about h.100

timeslots etc

##

func out_setup()

int rc;

var out_command:10;

var out_sess:10;

 ###

 # Now Initiate the dial sequence. The channel task is always waiting on

 # port 6000+task_id

 out_progress=0;

 debug(serv_name & " SETUP About to connected to port=" & (PORT_OFFS+parent_pid));

 // Make a socket connection to channel control task on port=6000+task_id

 out_sock=Sconnect("localhost",PORT_OFFS+parent_pid);

 // Loop waiting for connection or error

 while(1)

// Check if socket is ready for write (connection complete)

x=Scheck(out_sock,1);

if(x eq 1)

 break;

endif

// Check for error

x=Scheck(out_sock,2);

if(x eq 1)

 errlog(serv_name & ": Error could not connect to channel task on port=" &

(PORT_OFFS+parent_pid));

 return -1;

 endif

// prevent tight loop to allow windows to receive messages..

task_sleep(1);

 endwhile

 if(out_sock < 0)

 errlog(serv_name & ": failed to make socket connection to channel control task on

port=",PORT_OFFS+parent_pid);

 return -1;

 endif

 debug(serv_name & " SETUP connected to port=" & (PORT_OFFS+parent_pid));

 // If we get here then we have made a socket connection..

p34

© Zentel Telecom Ltd., 2009

 out_progress=1; // socket connection made (from this point jump to onsignal to force cleardown)..

The next part of the function sends the C_PS_SETUP message and then waits for the response
using the TCPsend() and TCPrecv() functions:

 // Send setup request... format is:

 // C_PS_SETUP,<sessionID>,<Bus type>,<Bus Timeslot>,<offered vox chan>

 out_msg=C_PS_SETUP & "," & TS_TYPE_LOGICAL & ",-1,0";

 rc=TCPsend(out_sock,out_msg);

 if(rc < 0)

 errlog(serv_name & ": Failed to send SETUP message: err=",rc);

 // Force jump to onsignalto clear down..

 task_hangup(task_getpid());

 endif

 out_progress=2; // Sent setup request..

 tmr_start();

 out_msg="";

 out_omsg="";

 while(1)

rc=TCPread(out_sock,&out_msg,&out_omsg,0);

// Check for loss of connection

if(rc < 0)

 errlog(serv_name & ": Socket disconnect during SETUP exchange: err",rc);

 return -1;

// If there was a message then extract the command

else if(rc eq 1)

 debug(serv_name & ": SETUP: RECEIVED MESSAGE=" & out_msg);

 strtok("","");

 out_command=strtok(out_msg,",");

 break;

endif endif

########################## CHECK FOR TIMEOUT IF NO MESSAGE ##############

if(tmr_secs() > 15)

 errlog(serv_name,": SETUP - Timeout waiting for SETUPRESP from channel task: line=",line);

 return -1;

endif

task_sleep(1);

 endwhile

The next step of the function is to check that the correct respsonse has been received and to
return to the main check_inbound() function:

 switch(out_command)

case C_PS_SETRESP:

 debug(serv_name & "SETUP: GOT SETUP RESP - msg = " & out_msg);

 // Extract the data fields

 // Get the return code

 out_setuprc=strtok(out_msg,",");

 // Check for setup error of some kind..

 if(out_setuprc <> 0)

errlog(serv_name,"SETUP Failed result=" & out_setuprc);

return -2;

 endif

p35

© Zentel Telecom Ltd., 2009

 out_progress=3; // Set flag to indicate set-up complete

 // Setup suceeded - extract rest of fields

 // Get the bus timeslot and type (E.g. LOGICAL, SCBUS etc)

 out_slottype=strtok(out_msg,",");

 out_slot=strtok(out_msg,",");

 out_voxchan=strtok(out_msg,",");

 out_scdefer=strtok(out_msg,",");

 debug("SETUP: obtained slottype=" & out_slottype);

 debug("SETUP: obtained slot =" & out_slot);

 debug("SETUP: obtained voxchan =" & out_voxchan);

 return 1;

default:

 errlog(serv_name,": SETUP","Getting nonsense while waiting for SETRESP! msg=" & out_msg);

 return -1;

 endswitch

endfunc // End of the out_setup() function

-o-

p36

© Zentel Telecom Ltd., 2009

out_dial() function description
The out_dial() function sends the C_PS_DIAL message over the socket connection to initiate
an outbound call on the channel.

The code is as follows:

func out_dial(dest_telno,orig_telno)

int rc;

 out_msg = C_PS_DIAL & "," & dest_telno & "," & orig_telno & "," & NT_NATIONAL & "," & 1 & "," & "00";

 rc = TCPsend(out_sock,out_msg);

 if(rc < 0)

 errlog(serv_name & ": Failed to send DIAL message: err=",rc);

 // Force jump to onsignalto clear down..

 task_hangup(task_getpid());

 endif

 out_progress=4; // Dial request has been sent...

 return 0;

endfunc

-o-

p37

© Zentel Telecom Ltd., 2009

out_progress() function description
The out_progress() function simply waits for a call progress message, extracts the time-stamp
and event data then returns this information to the calling program. All arguments passed
to this function are pointers to variables to contain the results:

func out_progress(px_event,px_data,px_ldate,px_ltime,px_duration)

int rc;

 // Check for a call progress messages

 rc = TCPread(out_sock,&out_msg,&out_omsg,0);

 if(rc < 0)

errlog(serv_name,": PROGRESS - Error reading socket error=",rc);

return -1;

 else if(rc eq 1)

strtok("","");

*px_event=strtok(out_msg,",");

 else

return 0;

 endif endif

 out_lastmsg=out_msg;

 switch(*px_event)

case C_PS_ALERTING:

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

 *px_ltime=strtok(out_msg,",");

 debug("XXXPROGRESS: check_inbound(): GOT ALERTING: data code=" & *px_data);

 return 1;

case C_PS_PROCEEDING:

 debug("XXXPROGRESS: check_inbound(): GOT PROCEEDING");

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

 *px_ltime=strtok(out_msg,",");

 return 1;

case C_PS_PROGRESSING:

 debug("XXXPROGRESS: check_inbound(): GOT PROGRESSING");

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

 *px_ltime=strtok(out_msg,",");

 return 1;

case C_PS_CONNECTED:

 debug("XXXPROGRESS: check_inbound(): GOT CONNECTED");

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

 *px_ltime=strtok(out_msg,",");

 out_progress=5; # We are connected

 return 2;

case C_PS_DISCONNECTED:

 debug("XXXPROGRESS: check_inbound(): GOT DISCONNECTED");

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

 *px_ltime=strtok(out_msg,",");

 *px_duration=strtok(out_msg,",");

 return 1;

case C_PS_TASKFAILURE:

 debug("XXXPROGRESS: check_inbound(): GOT TASKFAILURE");

 *px_data=strtok(out_msg,",");

 *px_ldate=strtok(out_msg,",");

p38

© Zentel Telecom Ltd., 2009

 *px_ltime=strtok(out_msg,",");

 return 1;

default:

 errlog(serv_name,": PROGRESS Received invalid message=" & out_msg);

 return 0;

 endswitch

end

-o-

p39

© Zentel Telecom Ltd., 2009

out_release() function description
The out_release() function relies on the global out_progress variable which is maintained by
all of the other out_xxxx() functions as follows. Depending on which state the outbound call
has reached then function will either close the socket connection of will send as
C_PS_RELEASE message then close the socket connection:

// this function hangs up and releases socket etc.

func out_release()

int rc;

 switch(out_progress)

 case 0:

 return 0;

 // We have connected to channel task

 case 1:

 Sclose(out_sock);

 // We have sent setup request..

 case 2:

 Sclose(out_sock);

 // We have received setup response

 case 3:

 Sclose(out_sock);

 // We have sent dial request

 case 4:

 // Need to send release request to clear down call

 out_msg = C_PS_RELEASE & "," & NORMAL_CLEARING;

 rc = TCPsend(out_sock,out_msg);

 Sclose(out_sock);

 // Connection established..

 case 5:

 // Need to send release request to clear down call

 out_msg = C_PS_RELEASE & "," & NORMAL_CLEARING;

 rc = TCPsend(out_sock,out_msg);

 Sclose(out_sock);

 endswitch

 out_progress=0;

 return 0;

endfunc

-o-

p40

© Zentel Telecom Ltd., 2009

IN_IVR_TASK.TES

IN_IVR_TASK.TES
The IN_IVR_TASK.TES is the program that is spawned when an inbound call is received. It
simply plays a voice file (DEMO.VOX) and then sends a request to the CHANTASK.TES task to
hangup the call and reset the channel ready to take another call.

After some trivial initialisation the program first reads the arguments that have been passed
to it from the CHANTASK task:

 // Get the passed arguments..
 serv_name=arg(0);

 line=arg(1);

 port=arg(2);

 channel=arg(3);

 vox_chan=arg(4);

It then simply plays the voice file DEMO.VOX, pauses for 20 seconds, then sends a message to
the controlling CHANTASK task to hangup the channel:

 // Play a voice file..
 SMplay(vox_chan,"DEMO.VOX");

 // Pause for 20 seconds

 sleep(200);

 // Get the Proccess ID of parent task

 parent_pid=task_parentid();

 // Send hangup request to parent tasl

 msg_put(parent_pid,GEN_HANGUP);

 // Force ourselve into onsignal

 task_hangup(task_getpid());

The final task_hangup() call forces the program to jump to the onsignal function which
requests that the channel be releases and reset ready for another call:

// This will be jumped to as soon as hangup is received..

onsignal

 // Get the Proccess ID of parent task

 parent_pid=task_parentid();

 // Send GEN_RESTART message

 msg_put(parent_pid,GEN_RESTART);

 // Wait for Ack message

 msg=msg_get(60);

 // end the application

 stop;

endonsignal

Notice that the messages are sent to the CHANTASK task using internal Telecom Engine

p41

© Zentel Telecom Ltd., 2009

messages frmo the CXMSG.DLL library.

-o-

p42

© Zentel Telecom Ltd., 2009

SCRDEMO.TES

SCRDEMO.TES program description
The SCRDEMO.TES program is in charge of maintaining the application terminal screen.
There are a number of utility function provided with the DEMO application and that reside in
the common subdirectory that wotk with the SCRDEMO.TES program to allow the screen
status to be updated.

The SCRDEMO splits the screen into four separate areas shown in the screen shot below:

The Trunk overview area allows a complete quick glance summary showing what is happening
on every channel of each trunk. Each line of the Trunk overview area shows the logical
channel number for the first channel on the trunk followed by a single character channel
status indicator (which will be the first character of the channel status from the left or right
channel status windows). By appropriate use of colour this can provide a very useful
indicator of what is happening on each channel of the trunk. In the DEMO program, inbound
channels with active calls have the colour black on whitewhereas the outbound channels have
various colours on a black background (E.g. Red on black for RING, green on black for
ANSWER, cyan on black for HANGUP etc).

The left and right channel status windows show more detailed channel status information
about what is happening on each channel and are individually scrollable by the SCRDEMO.TES
program. The channel status window consists of three parts (from left to right):

a) Channel number
b) Five character channel status

p43

© Zentel Telecom Ltd., 2009

c) Twenty character channel status detail

In the DEMO program the channels are split 50/50 between the left and right channel status
windows and the number of channels will thus depend on the DEMO.CFG file.

The Scrolling Log Area is the only part of the screen that is written to directly by other
programs apart from the SCRDEMO.TES program through the applog(), errlog(), tracelog()
function calls provided by the CXTERMX.DLL library.

The functions supplied with the DEMO program that allow for the screen to be updated are as
follows:

scr_print(line,colour,detail_text,window_id)
scr_stat(stat_text)
sc_stat1(line,stat_text)
scr_stat2(line,colour,stat_text)

scr_print() writes to the detailed status part of the status window for the specified logical
channel in the specified colour. The window_id argument is not used by the SCRDEMO.TES
program, and is for future use.

scr_stat() writes to the 5 character abbreviated status part of the status area for the current
logical channel (defined by the global line variable passed as an argument). It uses the
default screen colour.

scr_stat1() allows the logical line number to be specified rather than using the current one
specified by the line global variable. It uses the default screen colour.

scr_stat2() allows both the logical line number to be specified as well as the colour that should
be used.

The way these functions communicate with the SCRDEMO.TES program is through a set of
global arrays declared by the SCRDEMO.TES program using the global array functions frmo
the CXGLB.DLL libarary.

The code for the scr_print() function is as follows:

Function: scr_print

synopsis: include "screen.inc"

scr_print(a_line,a_attr,a_msg,a_window)

a_line - The line number

a_attr - The colour (or "") for default colour

a_msg - The message to write

a_window - The the window number to write to (unused in SCRDEMO.TES)

func scr_print(a_line,a_attr,a_msg,a_window)

task_defersig("(");

 array_set("line_text",a_line,a_msg);

 array_set("line_color",a_line,a_attr);

 array_set("line_txflag",a_line,1);

task_defersig(")");

end

The code for the scr_stat2() function is as follows:

scr_stat: Put short (up to 5 characters) status field for line

#

p44

© Zentel Telecom Ltd., 2009

ARGUMENTS

a_line The line number

a_attr Colour to use

a_msg Message string

func scr_stat2(a_line,a_attr,a_msg)

task_defersig("(");

 array_set("line_stat",a_line,a_msg);

 array_set("line_attr",a_line,a_attr);

 array_set("line_stflag",a_line,1);

task_defersig(")");

end

Notice that both functions use the task_defersig() function to prevent a hangup signal from
interrupting the code block before it has completed. There are then four global arrays
that can be set to update the screen:

"line_text" - This array holds the detail text for a particular logical line
"line_color" - This array holds the colour attribute that is to be used for the detail text
display
"line_txtflg" - Set this to 1 to indicate to the SCRDEMO.TES that the detail text for this
logical line has changed
"line_stat" - This array holds the abbreviated 5 character status for the logical line
"line_attr" - This array holds the colour attribrute that is to be used for the status display
"line_stflag" - Set this to 1 to indicate to the SCRDEMO.TES that the status test for this
logical line has changed

From the above code it can probably be guessed that the SCRDEMO.TES simply polls these
arrays looking for any elements in the "line_txtflg" or "line_stflag" set to 1. If any are found
then the respective status or detail text on the screen is updated and the "line_txtflg" or
"line_stflag" array element is set back to 0.

There is probably not much to be gained from showing the entire code from the
SCRDEMO.TES program since much of the code is dedicated to calculating the offsets on the
screen where the channel status and/or detail should be written. Instead it is probably more
useful to just look at the important parts of the program.

After some trivial initialisation the first thing the SCRDEMO program does is to declare the
global arrays described above:

 ## Allocate the screen arrays..

 array_dim("line_stat",1024,10);

 array_dim("line_attr",1024,8);

 array_dim("line_text",1024,80);

 array_dim("line_color",1024,8);

 array_dim("line_stflag",1024,1); # change flag for status

 array_dim("line_txflag",1024,1); # change flag for text

The array_dim(name,num_elements,length) function allocates a dynamic global array with
the number of elements given by num_elements where the length of each element is given
by length. As can be seen above, the maximum number of logical channels that can be
handled by the SCRDEMO.TES program is 1024.

Next the SCRDEMO.TES retrieved the arguments passed down to it from the DEMO.TES
program:

 # Get the startup parms
 bsv_parm1=arg(1);

 bsv_parm2=arg(2);

 bsv_parm3=arg(3);

p45

© Zentel Telecom Ltd., 2009

 strtok("","");

 trunk_area_depth=strtok(bsv_parm1,",");

 if(trunk_area_depth > 32)

 trunk_area_depth=32;

 else if(trunk_area_depth < 1)

 trunk_area_depth=5;

 endif endif

 # fix the line depth

 line_depth=LINE_DEPTH;

 strtok("","");

 lline_start=strtok(bsv_parm2,",");

 lline_tot=strtok(bsv_parm2,",");

 strtok("","");

 rline_start=strtok(bsv_parm3,",");

 rline_tot=strtok(bsv_parm3,",");

The arguments passed down are as follows:

arg1=<number of trunks>
arg2=<start line of left channel status win>,<number lines in left win>
arg3=<start line of right channel status win>,<number lines in right win>

arg2 and arg3 contain two values each separated by commas so the strtok() function is used
to extract the individual values.

After this the program enters the main loop where it alternatively waits for internal telecom
engin messages to arrive and/or refreshes the screen by iterating over the above arrays to
update the screen:

 # Now loop waiting for commands
 while(1)

 #applog("Waiting for message");

 r_msg=msg_get(1);

 if(r_msg streq "")

 goto refresh;

 endif

 r_cmd=substr(r_msg,1,2);

 switch(r_cmd)

 case SCR_INIT:

 init_screen();

 # The calling task will be waiting for a response so give it one!

 msg_put(msg_pid(),"!");

 case SCR_TRUNK:

 # Get the trunk channel start and channel range

 strtok("","");

 tot_trunks++;

 trunk_start[tot_trunks]=strtok(substr(r_msg,4),",");

 trunk_chans[tot_trunks]=strtok(substr(r_msg,4),",");

 init_trunk(tot_trunks);

 msg_put(msg_pid(),"!");

 case SCR_LEFT:

 curr_scroll=LEFT_SIDE; # Left screen

 next_screen(LEFT_SIDE);

 # Right select

 case SCR_RIGHT:

 curr_scroll=RIGHT_SIDE; # Left screen

 next_screen(RIGHT_SIDE);

p46

© Zentel Telecom Ltd., 2009

 case SCR_BOTH:

 curr_scroll=BOTH_SIDES; # both sides of screen

 next_screen(BOTH_SIDES);

 case SCR_GOTO:

 goto_line=substr(r_msg,4,3);

 #applog("Goto line=" & goto_line);

 # Which side is it?

 if(goto_line >= lline_start and goto_line <= (lline_start+lline_tot-1))

 lcurr_page=(goto_line-lline_start)/line_depth+1;

 #applog("Calc new lcurr_page=" & lcurr_page);

 draw_left();

 else if(goto_line >= rline_start and goto_line <= (rline_start+rline_tot-1))

 rcurr_page=(goto_line-rline_start)/line_depth+1;

 #applog("Calc new rcurr_page=" & rcurr_page);

 draw_right();

 endif endif

 # Toggle screen formats

 case SCR_STYLE:

 # do nothing..

 case SCR_NEXT:

 #applog("SCRDRV2: Next received");

 next_screen(curr_scroll);

 case SCR_PREV:

 prev_screen();

 case SCR_REDRAW:

 redraw_screen();

 endswitch

This is the refresh screen part..

refresh:

 timer_refresh();

 endwhile

The messages that can be received by the SCRDEMO.TES program allow for the screen to be
initialised and then for another task to accept commands from the keyboard and to scroll the
left and right status windows (or both) or to go to a specific line number in the left or right
status windows.

There is no keyboard interface task provided with this version of the DEMO program and then
only message that is used is the SCR_INIT message which is sent from the DEMO.TES
program at startup and causes the screen to be initialised.

-o-

p47

© Zentel Telecom Ltd., 2009

COMMAND.TES

COMMAND.TES program description
The COMMAND.TEX program allows for the terminal console to be placed in 'command' mode
and accept input from the keyboard.

In order to enter 'command' mode the user would hit the colon (":") key, then type in the
command followed by the <ENTER> key. To escape from 'command' mode the user would
hit the <ESC> key.

The commands that have been provided in the COMMAND.TEX program are simply to allow
the right hand side of the screen to be scrolled if there are more channels specified in the
DEMO.CFG file than can be simultaneously displayed.

The commands accepted by the COMMAND.TEX program are as follows:

l <ENTER> - Scroll the left hand list of channels
r <ENTER> - Scroll the right hand list of channels
b <ENTER> - Scroll both left and right hand lists of channels
g [channel] <ENTER> - Goto the given [channel] number (ie scroll co this channel is at
the top of list)
<ENTER> - Scroll the left, right or both lists depending on the last
command entered from above
<ESC> - Escape from command mode

These commands will only take effect if the list of channels exceeds the height of the screen
(i.e there are at least 4 E1s running under the DEMO application).

In the source file (COMMAND.TES) you will see that after some initialisation the program
enters a loop waiting for the colon ":" key to be press to put the terminal into 'command'
mode. For this the program simply calls the term_kbget() function to receive keys
pressed on the keyboard. If a ":" is hit the program obtains the last row of the terminal
screen from the term_size() function and then enters a second loop accepting input from the
keyboard throught the term_kbedit() function call. The source snippet for this can be
seen below:

 # Loop forever

 while(1)

 input_str=term_kbget();

 if(input_str streq ":")

 # Get the screen size..

 term_size(&scr_rows,&scr_cols);

 if(scr_cols > 127)

 line_width=126;

 else

 line_width=scr_cols-1;

 endif

 input_str="";

 # Loop accepting commands

 while(1)

 term_cur_pos(scr_rows-1,0);

 term_print(ljust(":"," ",line_width));

 input_str=term_kbedit(scr_rows-1,1,scr_cols-1,input_str,0);

 # Get the character that terminated the input (E.g. ESC or Enter)

 c=term_kbgetx();

 term_kbget();

 etc..

p48

© Zentel Telecom Ltd., 2009

The key that caused the term_kbedit() to terminate is retrieved by a call to term_kb_getx()
and if it was the ESC key then we break out of the inner loop to take the terminal out of
command mode.

Otherwise the input_str variable has been returned from the term_kbedit() function it is then
parsed and the command and parameters are extracted to an array called parms[]:

 if(c eq ESC)

 term_cur_pos(scr_rows-1,0);

 term_print(ljust(""," ",line_width+1));

 break;

 else

 # Strip off any question mark at end

 if(substr(input_str,length(input_str),1) streq "?")

 input_str=substr(input_str,1,length(input_str)-1);

 endif

 # Get each parmeter in turn

 i=1;

 for(p=1;p<=MAX_PARMS;p++)

 parms[p]="";

 endfor

 break_next=0;

 for(p=1;p <= MAX_PARMS;p++)

 # skip spaces

 for(; i <= length(input_str); i++)

 if(substr(input_str,i,1) strneq " " and

substr(input_str,i,1) strneq "`t")

 break;

 endif

 endfor

 # If rest of input contained only spaces

 if(i > length(input_str))

 break;

 endif

 # extract next parm ...

 for(;i <= length(input_str);i++)

 c=substr(input_str,i,1);

 if(c streq " " or c streq "`t")

 break;

 endif

 parms[p]=parms[p] & c;

 endfor

 if(break_next eq 1)

 break;

 endif

 endfor

Once the command and parameters have been parsed from the input string then the program
can excecute the commands. For the DEMO application the only commands are to allow the
screen to be scrolled by sending internal messages to the SCRDEMO.TEX program. The
messages that can be sent are defined in SCREEN.INC and are as follows:

const SCR_NEXT = "03"; # Scroll left, right or both screens (depends on last command)
const SCR_LEFT = "06"; # Select and scroll left screen
const SCR_RIGHT = "07"; # Select and scroll right screen
const SCR_BOTH = "08"; # Scroll both
const SCR_GOTO = "09"; # Goto a certain line

These messages are sent to the SCRDEMO.TEX task using the msg_put() function as shown in
the following code snippet:

p49

© Zentel Telecom Ltd., 2009

 # If there was no input (only ENTER pressed) then just send the

SCR_NEXT command

 if(parms[1] streq "")

 input_str="";

 msg_put("SCREEN",SCR_NEXT);

 continue;

 endif

 # We have got a command

 p--;

 switch(parms[1])

 case "l":

 msg_put("SCREEN",SCR_LEFT);

 case "r":

 msg_put("SCREEN",SCR_RIGHT);

 case "b":

 msg_put("SCREEN",SCR_BOTH);

 case "g":

 msg_put("SCREEN",SCR_GOTO & " " & parms[2]);

 default:

 input_str=input_str & "?";

 continue;

 endswitch

 input_str="";

 endif # esc not pressed

 endwhile # End loop accepting commands

 endif # End if ":"

 endwhile

endmain

-o-

p50

© Zentel Telecom Ltd., 2009

Index

 - C -
CHANTASK.TES program description 13
COMMAND.TES program description 47
Compiling the applications 8

- D -
DEMO.TES program description 10

- I -
Introduction 5
IN_IVR_TASK.TES 40

- O -
out_dial() function description 36
OUT_IVR_TASK program description 30
out_progress() function description 37
out_release() function description 39
out_setup() function description 33

- R -
Running the demo application 9

- S -
SCRDEMO.TES program description 42

- T -
The check_inbound() function 26
The check_outbound() function 17

© Zentel Telecom Ltd. 2009
www.telecom-engine.com

	Table of Contents
	Introduction
	Compiling the applications
	Running the demo application
	DEMO.TES
	DEMO.TES program description

	CHANTASK.TES
	CHANTASK.TES program description
	The check_outbound() function
	The check_inbound() function

	OUT_IVR_TASK.TES
	OUT_IVR_TASK program description
	out_setup() function description
	out_dial() function description
	out_progress() function description
	out_release() function description

	IN_IVR_TASK.TES
	IN_IVR_TASK.TES

	SCRDEMO.TES
	SCRDEMO.TES program description

	COMMAND.TES
	COMMAND.TES program description

