Demo Program

Programmer's Reference

© Zentel Telecom Ltd., 2009

© Zentel Telecom Ltd., 2009

p2

© Zentel Telecom Ltd., 2009

Table of Contents

Introduction
Compiling the applications
Running the demo application
DEMO.TES
DEMO.TES program description
CHANTASK.TES
CHANTASK.TES program description
The check_outbound() function
The check_inbound() function
OUT_IVR_TASK.TES
OUT _IVR_TASK program description
out_setup() function description
out_dial() function description
out_progress() function description
out_release() function description
IN_IVR_TASK.TES
IN_IVR_TASK.TES
SCRDEMO.TES
SCRDEMO.TES program description
COMMAND.TES
COMMAND.TES program description

p3

10
10
13
13
17
26
30
30
33
36
37
39
40
40
42
42
47
47

© Zentel Telecom Ltd., 2009

p4

© Zentel Telecom Ltd., 2009

Introduction

The DEMO is a collection of programs that together provide a more sophisticated example of
the Telecom Engine applicaton in action.

The programs have been designed using some of the techniques that have been employed
previously in larger telecommunincations systems, running many thousands of channels.

The demo programs have been stripped down to provide a more simplified application for
study, but it would not take much work to add the necessary code to convert this basic demo
software into a fully working system.

Below is a screen shot of the DEMO program running:

I Application Terminal [20090514 093711.6]

Since the DEMO program could form the basis for a more sophisticated Telecommunication
platform then this document aims to describe the various programs in detail so that some of
the techniques used can be copied or modified for this purpose.

Rather than requiring the programmer to pore over hundreds of lines of source code, this
document will take the programmer step by step through the demo application programs,
thereby making the job of understanding the demo programs a lot easier.

First of all lets look at the various programs that comprise the demonstration application.
These are as follows:

DEMO.TES - Master application that spawns all of the other tasks

CHANTASK.TES - This program takes control of a single E1 port/channel
SCRDEMO.TES - This program paints the terminal console screen

COMMAND.TES - This program takes input from the command line to scroll the screen
etc.

IN_IVR_TASK.TES - This program is spawned when an inbound call is received

OUT_IVR_TASK.TES - This program is spawned to take control of an outbound channel

The DEMO.TES program is the 'master’' program that spawns the screen handling program (
SCRDEMO.TES) and the keyboard input program (COMMAND.TES) and then for each channel
in the system it spawns a single channel control task (CHANTASK.TES). The total number

pS

© Zentel Telecom Ltd., 2009

of channel control tasks that are spawned is defined in a text file called DEMO.CFG which also
defines whether a particular channel is an inbound or outbound channel.

If a channel is defined as an inbound channel then the CHANTASK.TES program will go into a
loop waiting for an inbound call, then when an inbound call is detected it will spawn the
inbound IVR task (IN_IVR_TASK.TES) which will simply play a voice message then hang up
the call.

If a channel is defined as an outbound channel then the CHANTASK.TES will immediately
spawn the outbound IVR task (OUT_IVR_TASK) which will wait a random amount of time
before initiating a dial on the channel, then pausing for another random amount of time before
hanging up.

In summary, the demo program can be configured (through the DEMO.CFQG) file to spawn any
number of channel control tasks (one for each channel), which can then either be inbound
channels simply waiting for a call and then playing a message before hanging up, or they can
be outbound channels which continuously dial out on the channel after pausing for a random
amount of time.

Before describing these individual programs in more detail there are a couple of important
techniques that have been used in the overall architecture of the demo programs which should
be mentioned.

You will notice that there is a high level of specialization in the various tasks that comprise the
demo system. For example the SCRDEMO.TES program is in charge of updating the
application terminal screen for each channel -none of the other tasks writes to the screen
directly (except for scrolling log messages).

Also the CHANTASK.TES program is the only program that makes any calls to the Aculab call
handling function libraries to control the inbound or outbound calls to and from the system.

The actual IVR tasks that play messages and/or receive DTMF input from the caller only
interact with the channel control task through either TCP/IP connections (using the
CXSOCK.DLL functions) or using internal Telecom Engine messages (using the CXMSG.DLL
functions).

By providing such specialisation of functionality it would be possible to completely replace the
CHANTASK.TES task with another one that perhaps uses a different protocol or even uses
completely different hardware. The CHANTASK.TES program supplied with the demo
programs assumes that the hardware is Aculab running the ISDN protocol, but this could be
changed to another application with a protocol other than ISDN (such as SS7 or CAS) without
needing to change the inbound or outbound IVR tasks.

This modular design is a powerful methodology that is reommended when designing of a
telecommunications systems, and the demo program shows some of these techniques in
action.

Cross Over Testing:

It might be quite useful to define the channels of the first E1 port on a board to be inbound
channels, whist defineing the the channels on the second E1 port to be outbound channels.
Then if a cross-over cable is used between the first and second E1 port and the Aculab
Configuration is defined correctly (E.g NET ISDN on one side and USER ISDN on the other
(with correct clocking)), then the DEMO application can be used to call out of the channels on
the second port and be answered by the channels on the first port.

Under this configuration the program will automatically continue to dial out on one side and

answer on the other indefinitely, without needind a second system or connection to a digital
PSTN.

po

© Zentel Telecom Ltd., 2009

The following sections describe each of the individual demo program tasks in more detail.

p7

© Zentel Telecom Ltd., 2009

Compiling the applications

A batch file has been provided which can be run from a command prompt to compile any of
the demonstration programs. This batch file is called MK.BAT and contains the following
commands:

set INCDIR=..\include;..\common; .
set FUNCDIR=..\common; .
tcl -e %1 %2

The INCDIR environment variable tells the compiler where to find any header files specified by
the $include statement. The FUNCDIR environment variable defines where any external
function (*.FUN) files reside.

This batch file assumes that the Telecom Engine binaries are included in the PATH
environment variable and so to compile any of the programs one simply needs to type one of
the following from the command line one after the other.

mk demo

mk chantask
mk scrdemo

mk command
mk in_ivr_task
mk out_ivr_task

Note that some of these programs are longer than the 100 line limit imposed by the
Evaluation version of the compile. For this reason these programs come pre-compiled, but
a full development dongle is reqgired if you wish to modify these source files to make your own
changes.

p8

© Zentel Telecom Ltd., 2009

Running the demo application

Beneath the DEMO folder where the source resides there is a sub-directory called RUN which
contains a batch file called RUN.BAT.

This batch file contains the following commands:

set TEXDIR=..
del *.log
tex demo

The TEXDIR environment variable specifies the location of the excecutable TEX files which is
this case is the directory above).

The RUN subdirectory also contains the config files that are needed to run the DEMO.

The first configuration file (ACUCFG.CFG) is used by the standard Telecom Engine library files
for the Aculab hardware (CXACULAB.DLL and CXACUDSP.DLL), and this file simply lists the
serial numbers of the Aculab boards in the order that you want to open them. The ports
on these boards will then be opened in turn. The first E1 port on the first signalling board
specified in the ACUCFG.CFG file will become port O and will then increase sequentially.

The first voice channel found on the first media board specified in the ACUCFG.CFG file will
become voice channel 1 and will increase sequentially from there.

The second configuration file (DEMO.CFG) is aimed at the DEMO.TEX program and tells the
DEMO.TEX program which channels are active and whether they are inbound or outbound
channels (see DEMO.TES program description).

Assuming that the ACUCFG.CFG and DEMO.CFG files have been correctly configured and that
the Telecom Engine binary files have been included in the PATH environment variable, then
the RUN.BAT will launch the demo application.

p9

© Zentel Telecom Ltd., 2009

DEMO.TES

DEMO.TES program description

The DEMO.TES program is the 'master' program that is run to start the demonstration
application. The first thing that the DEMO.TES does is to open the DEMO.CFG text file
which defines information for each of the E1 ports that will be used by the demo program.
Each E1 port is known as a trunk and consists of up to 31 bearer channels (30 for ISDN since
there is always one signalling port, SS7 can have any number up to 31 depending on how
many signalling channels there are).

The DEMO.CFG file has the following format:

<Number of trunks>

<trunkl port num (0..x)>,<trunkl
vector>,<inbound/outbound(0/1)>,<vox_offset>,<ivr_task>
<trunk2 port num (0..x)>,<trunk2
vector>,<inbound/outbound(0/1)>,<vox_offset>,<ivr_task>
etc

For example a valid DEMO.TES file for two inbound trunks would be:

2
0,1111121121211111021111211211111111,0,1,in_ivr_task
1,11111121111111101111121111111111,0,31,in_ivr_task

and for two outbound trunks:

2
0,111112112121111101111212121111111,1,1,0ut_ivr_task
1,1111112121111110111211211211111111,1,31,0ut_ivr_task

and for two inbound and two outbound trunks:

4
0,111111211112121110212111112211121111,0,1,in_ivr_task

1,111211112121112121201121211112111111,0,31,in_ivr_task
2,1111111211211210211211211211211,1,0,0ut_ivr_task
3,1111111112121111102111121211121121111,1,0,0ut_ivr_task

The first field, <trunk port num=>, defines the E1 port number for the trunk ranging from O
upwards.

The second field, <trunk vector>, is a 31 character channel vector, where each character
represents one of the channels on the E1 port. 1 represents and active bearer channel and O
represents and inactive bearer channel (e.g. a signalling channel). Since this version of the
demowa written for ISDN then the vectors all have channel 16 excluded since it is used for
signalling in ISDN.

The third field, <inbound/outbound flag>, defines whether channels on the trunk are inbound
or outbound channels. for inbound set this field to O, for outbound set this field to 1.

pl0

© Zentel Telecom Ltd., 2009

The fourth field, <vox_offset>, defines the offset of first voice channel to be used by the first
channel of the E1 trunk. For this demonstration only the inbound channels require a voice
channel (to play a message to the inbound caller). For outbound channels this can be set to
0 to indicate that no voice channel needs to be allocated.

The fifth field, <ivr_task>, defines the name of the task that will be spawned. For inbound
channels the task is only spawned when a call is received on any of the channels on the E1
trunk. For outbound channels the task is spawned automatically after a random period of
time. In this version of the demo program the inbound task should be set to
"IN_IVR_TASK" which simply plays the message "DEMO.VOX" then hangs up. The
outbound task is called OUT_IVR_TASK and sends TCP/IP messages to the CHANTASK
program to control the outbound call after which it pauses a random period of time, then
hangs up. For outbound calls there is no need for a voice channel in this version.

Looking into the source code we can see that after some trivial initialisation the first thing the
DEMO.TES program does is to open the DEMO.CFG file:

fd=sys fhopen ("DEMO.CFG","rs");

if(£d < 0)
errlog("Could not open DEMO.CFG: err=", fd);
stop;

endif

It then reads the <number_of trunks=> field using the sys_fhgetline() function call:

// read the first line from the CFG file
num_trunks=sys fhgetline (fd);

The program then spawns the screen handling task (SCRDEMO) passing to it various
parameters to control the look of the screen, including the number of trunks that has just
been read from the DEMO.CFG file:

// Spawn the screen driver passing:
// argl=num_trunks,
// arg2=left column len, tot chans
// arg3=right column len, tot chans
var arg2:127;
var arg3:127;
arg2="1," & (num_trunks/2*31);
arg3=((num_trunks/2*31)+1) & "," & (num_trunks/2*31);
scrtask pid=task spawn ("SCRDEMO",num_ trunks,arg2,arg3);

After spawning the SCRDEMO task the program then sends an initialisation message to it.
This is done using an internal Telecom Engine message (using the CXMSG.DLL library) as
follows (it also waits for a response):

// Need to send a Screen initialisation message to the screen handler..
msg_put ("SCREEN", SCR_INIT);

// The SCRDEMO task will send back a TE message containing a single
character ("!")

// to indicate that the screen has been initialised... so wait for this
before

// continuing..

msg_get (60);

Once this is done the DEMO.TES program then enters a loop for each trunk and will read the
trunk configuration lines one at a time and extract the comma delimited fields from it using

pll

© Zentel Telecom Ltd., 2009

the strtok() function from the CXSTRINGS.DLL library. This information is used to spawn a
channel control task (CHANTASK), one for each channel of each trunk. Note also that for
each trunk a message is sent to the screen handler to display information for that trunk (this
will be described in more detail in the SCRDEMO.TES program description):

// loop through trunks..

for (trunk=1;trunk<=num trunks;trunk++)
// read the next configuration line from the DEMO.CFG file..
cfg str=sys fhgetline (£fd);

if (cfg str streg "")
errlog("Invalid DEMO.CFG file (too few lines)");
stop;

endif

// Extract the fields (port,Vector,direction,ivr task)
Strtok (n", "") :

port=strtok(cfg str,",");

vector=strtok(cfg str,",");

tracelog ("DEMO: PORT=",port," vector=",vector);

dir flag=strtok(cfg str,",");

vox offset=strtok(cfg str,",");

ivr task=strtok(cfg str,",");

// Send screen initialisation message for trunk
msg_put ("SCREEN", SCR TRUNK & "," & (((trunk-1) * 31)+1) & ",31");

// The SCRDEMO task will send back a message containing a single
character ("!")

// to indicate that the trunk has been initialised... so wait for this
before

// continuing..

msg_get (60) ;

adjust=0;

// For each active channel in the vector mask spawn the channel
controller
for (chan=1;chan <= 31; chan++,logical line++)
// Only spawn channel control task if vector mask for this channel
is 1
if (substr (vector,chan,1l) eq 1)

task spawn ("chantask",logical line,port,chan,dir flag, (vox offset eq
0)?0:vox offset+chan- (adjust+l),ivr task);

else

// We don't waste a voice channel on inactive El ports to
adjust for this
adjust++;
endif
endfor

endfor

Once this has completed then the DEMO program will exit. There should now be one
CHANTASK task running for every active bearer channel defined in the DEMO.CFG. If the
trunk is defined as an inbound trunk then the CHANTASK will simply be waiting for an inbound
call. for outbound channels the outbound IVR task (OUT_IVR_TASK) will be spawned after a
random pause.

pl2

© Zentel Telecom Ltd., 2009

CHANTASK.TES

CHANTASK.TES program description

For every active channel on every trunk defined in the DEMO.CFG file there will be a
CHANTASK task spawned. The CHANTASK.TES is the file containing the source code for
these tasks.

The CHANTASK task will act differently depending upon whether the channel it is controlling
has been defined as an inbound channel or an outbound channel.

For inbound channels the CHANTASK program will simply wait for an inbound call to arrive
after which it will spawn the ivr task specified in the DEMO.CFG file. The inbound ivr task
provided with the demo programs (IN_IVR_TASK) simply plays a message (DEMO.VOX) then
issues a command back to the CHANTASK program instructing it to hang up and wait for the
next call.

For outbound channels the CHANTASK program waits a random amount of time before
spawning the ivr task specified in the DEMO.CFG file. The outbound ivr task provided with
the demo programs (OUT_IVR_TASK) then makes a TCP/IP connection to the CHANTASK
program and sends control messages to it to instruct it to make an outbound call. Once the
outbound call is connected the OUT_IVR_TASK will pause for another random period before
issuing a hangup request.

So in both cases the CHANTASK program will spawn a child task which then communicates
with the CHANTASK program by passing messages. For the inbound side the program
employs internal Telecom engine messages implemented using the CXMSG.DLL function
library whereas the outbound side uses the TCP/IP protocol implemented using the
CXSOCK.DLL library.

After some trivial initialisation the first thing the CHANTASK program does is to obtain the
arguments passed to it by the DEMO.TES master program:

// Get the passed arguments..
line=arg(l);

port=arg(2);

channel=arg(3) ;

in out flag=arg(4);
vox_chan=arg(5) ;

ivr task=arg(6);

The arguments passed down from the DEMO.TES program are as follows: line is the
logical line number (not the physical channel number); port is the aculab E1 port number
(starting from 0); channel is the physical channel number on the E1 port, in_out_flag is set to
0 if this is an inbound channel, 1 if it is an outbound channel; vox_chan is the voice channel
number to use; ivr_task is the name of the child task to spawn to control the inbound or
outbound call.

The next line updates the screen status for the port through the screen handler task. This is
function, str_st1() is in the common function directory:

// Set the status of the line on the screen to initialising..
scr_stl(line,"Init");

pl3

© Zentel Telecom Ltd., 2009

After this, if this is an outbound channel, the program attempts to open a listening port
through which it will received socket connections and then the messages used to control the
outbound calling protocol. A unique port number is obtained by adding the task ID of the
CHANTASK task to a PORT_OFFS which has been defined as 6000 in the declaration section at
the top of the program:

// If this is an outbound channel then create a listening socket to receive
commands//
if (in_out flag <> DIR_IN ONLY)
// Use the task ID and the PORT OFFS to generate a unique listening
port for this channel
1 sock=Slisten (PORT OFFS+task getpid()):;
if (1 _sock < 0)

errlog(serv_name & ": Failed to get listening socket: on port
", (PORT OFFS+task getpid())," err=",1 sock);
stop;
endif
debug (serv_name & ": line" & line & " GOT LISTENING SOCKET=" & 1 sock & "
on port=" & (PORT OFFS+task getpid())):;
endif

The Slisten() call returns a listening socket when can then be used to receive inbound socet
connections from other tasks.

After this the H.100 (or SC bus routing is done). If a voice channel is specified then the
voice channel is made to listen to the network channel and the network channel is made to
listen to the voice channel in a full duplex connection via the H.100 bus as follows:

FHEFAA A R R R R R R R AR
#dSFF R FFFFEFFSF INITIAL SC/H.100 BUS ROUTING
FHEFHAA A A

E R i
// Stop El1 channel from listening to anything...
CCunlisten (port, channel);
if (vox_chan > 0)

// Stop voice channel from listening to anything
SMunlisten (vox_chan);

// Make vox listen to net port
SMlisten (vox_ chan,CCgetslot (port,channel));

// Make net port listen to vox
CClisten (port, channel, SMgetslot (vox chan)) ;

endif

// Get the h.100 slot of the El port for use later..
slot no=CCgetslot (port,channel);

FHEFHEA A A R R R R R R R
FHEFHA A R A R R R R R R R

Next the channel state variable is set and the screen is updated again with the new channel
status through the scr_stl1() function:

pstn _call flag=PSTN CALL IDLE; // Set channel status to indicate there
is no outbound call at the moment

// Update the screen..
if(in_out flag eg DIR IN ONLY)

pl4

© Zentel Telecom Ltd., 2009

scr_stl(line,"Wait");
scr_print(line,"","Waiting For Line Seizure....","");

else if (in _out flag eqg DIR OUT_ONLY)
scr stl(line,"Idle");

else
scr_stl(line, "InOut");

endif endif

If the channel is an inbound channel the it is initialised ready to accept and incoming call with
the CCenablein() function from the aculab call control library (CXACULAB.DLL)

FHEFHAA A R R R R R R R R R
######4# INITIALISE THE CHANNEL READY TO MAKE/RECEIVE A CALL

g asdaddidi

FHEH A R R
if (in_out flag <> DIR OUT ONLY)
debug(serv_name & ": ENABLING INBOUND CALLS ON Logical CHANNEL=" & line);
// Enable incoming calls on this channel
if (CCenablein (port,channel) < 0)

errlog(serv_name & ": An error occurred enabling inbound calls on
port=",port," channel= ",channel);
stop;
endif
endif

FH A A A A R R R R R R 1 4
FHA A A A R R R R R R R 1 4

If the channel is an outbound channel then the outbound IVR task is then spawned which will
make a TCP/IP connection to this CHANTASK task and issue commands to initiate the
outbound call:

FHEF A R R R R R R R R R R R R R
##4#4##44 IF THIS IS AN OUTBOUND CHANNEL THEN WE SPAWN OUTBOUND TASK

FHEFHAAAS

FHe#AHE A A A A A A A A A A
if(in_out flag <> DIR IN ONLY)
task spawn (ivr_ task, line,port,channel,vox chan);
endif

After this the program goes into a loop calling the check_inbound() and check_outbound()
functions alternatively. The reason for the loop is to make provision to allow bi-directional
channels in the future. However for this version the channel must be only inbound or
outbound not both, so the loop is redundant at present:

// now loop checking for inbound calls or outbound socket connects
while (1)

check outbound() ;

check inbound() ;

task sleep(2); // Stop tight loop to allow

endwhile

pl5

© Zentel Telecom Ltd., 2009

plé

© Zentel Telecom Ltd., 2009

The check outbound() function

The following section describes the check outbound() function which polls for inbound socket
connections and then receives the TCP/IP messages that control the outbound call. These
TCP/IP messages implement a simplified outbound call protocol implemented using text based
messages.

All the TCP/IP messages sent and received by the program use the two utility functions:
TCPsend() and TCPrecv() which are defined in the common function directory. All the
messages sent over the socket connection are terminated with a carriage return character
(ASCII code 13 (0x0d)) and the TCPsend() and TCPrecv() take care of adding this or using it
to distinguish the end of a received message repsectively.

The first statement of the check outbound() function checks whether the channel is an
outbound channel, and if not, the function simply returns immediately:

if (in_out flag eg DIR IN ONLY)
return 0;
endif

After this the function checks for an inbound socket connection using the Saccept() function
call. This function will return -3 if there are no pending socket connections, otherwise it will
return an incoming socket handle. Note that is the channel is outbound only then the call
will "block’ for 3600 seconds waiting for an incoming connection, but if the channel is
bi-directional (then the call will not block and will return immediately (note that although
bi-direction channels are provided for here they have not been fully implemented in this
version). Here is the code for the check for an inbound socket connection:

// If this is outbound only then we can block for a while (1 hr)
if (in_out flag eg DIR OUT ONLY)
debug (serv_name & "Line " & line & " Going into BLOCKING
Saccept()...");
Wait up to 1 hourfor inbound connection
a_sock=Saccept (1 _sock, 3600) ;
debug (serv_name & "Line " & line & " Returned from BLOCKING Saccept ()
with sock=" &a sock);
// otherwise assume bi-directional channel so just do a quick check for
socket connection
else
a_sock=Saccept (1 _sock);
endif

if (a_sock < 0)
// Check for error (hopefully we will never see this since it it not
clear if we could recover)
if (a_sock <> EWOULDBLK)
errlog(serv_name & ": Error in Saccept attempt to get another
listening socket");
Sclose (1 _sock);

// Attempt to recover (by obtaining anotherlistening socket..)
while (1)

1 sock=Slisten (PORT OFFS+task getpid()):;

if (1 _sock < 0)

errlog(serv_name & ": Error listening on port " &
(PORT_OFFS+getpid()) & " retrying...");

else
debug (serv_name & ": Listening socket is " & 1 sock);
break;

endif

sleep(5);
endwhile

pl7

© Zentel Telecom Ltd., 2009

endif

return 0;
// else we got a inbound socket connection (to start an outbound call)
else

debug (serv_name & ": line=" & line & " RECEIVED INBOUND SOCKET

CONNECTION (TO START OUTBOUND CALL)");

pstn call flag=PSTN CALL START; # We now have an active connection

endif

If an inbound socket connection is received then the pstn_call_flag status is set to
PSTN_CALL_START and the function goes into a loop waiting for inbound messages to arrive
to control the issue of an outbound call on the channel. The messages to control an
outbound call have been implemented using a simple text based protocol where the message
format is as follows:

<Command>,<Session ID>,<Data>

Where <Command=> can be one of the following as defined in DEMO.INC from the include
sub-directory:

// Message commands for driving outbound calls.. Client-> Chantask
const C_PS DIAL="60";

const C_PS RELEASE="61";

const C_PS SETUP="70";

// Response commands indicating call progress.. Chantask->Client
const C_PS ALERTING="62";
const C _PS PROCEEDING="63";
const C_PS PROGRESSING="64";
const C_PS DISCONNECTED="65";
const C_PS TASKFAILURE="66";
const C_PS CONNECTED="67";
const C PS ATTACH="68";

const C_PS DETACH="69";

const C PS SETRESP="71";
const C_PS NOTIFY="73";

The program then enters a loop, alternatively checking for received messages from the client
task and checking for events on the outbound channel (only after the dial has been initiated).
There are three possible messages that can be received from the client side:

C_PS_SETUP - Exchanges some information about the H.100 bus slots for routing purposes
prior to dialing out.

C_PS_DIAL - Initiates the actual outbound call

C_PS_RELEASE - Request hangup and release of the outbound call.

The code for this loop is as follows (with some detail removed and replaced with pseudo
code):

FHE S R S
Loop looking for messages - stay in this loop until either socket closed
or dial session complete

FH A A A A R A R R R R R 1 4
while (1)

// Go check socket for incoming message..

// Use TCPread to get packet all in one go (with overlapped mulitple
messages stored in omsg)

rc=TCPread (a_sock, &msg, &omsg, 0) ;

// Check for lost socket
pl8

© Zentel Telecom Ltd., 2009

if(rc < 0)

// Make it look like a release
rcvd sess = ps_session;
msg=C_PS RELEASE & "," & NORMAL CLEARING;
Strtok ("" , 1] ll) ;
command=strtok (msg,",");

else if(rc eq 1)
extract the command
Strtok ("" , 1] ll) ;
command=strtok (msg,",");
rcvd sess = ps_session;
endif endif

if we get a message

if(rc eq 1)

switch (command)

// C_PS SETUP ,session, slot type, slot num ,offered vox chan [,
extra parms]

// C_PS SETRESP,result, slot type, slot num ,vox chan used,
defer vox routing flag

case C_PS SETUP:

etc....

//
C PS DIAL,session,dest tel,caller ID,num type,cli pass,idd prefix[,dest subaddr
;, CLI subaddr] case C_PS DIAL:
etc....
// C_PS RELEASE, session,<cause>
case C PS RELEASE:
etc....
endswitch
endif

// If a dial has been initiated
if(pstn _call flag eq PSTN CALL PROGRESS)
EventCode = CCstate (port, channel);
if (LastEventCode <> EventCode)
send back call progress message. .
etc..
endif
endif
endwhile

The first message received from the client task is a C_PS_SETUP message which contains the
following data:

70,<slot_type>,<slot_num>,<offered_vox_chan>

e The <slot_type> defines whether switching is to be done over a local logical H.100 bus or
some other external inter-chassis switching type (only local bus TS _TYPE_LOGICAL is
supported by the demo (see demo.inc for these definitions)).

e The <slot num=> is the handle for the H.100 timeslot

e The <offered_vox_chan=> is only used by protocols that require a voice channel (such as
R2/MF) and is not needed by the demo.

In a real application the <setup> message would allow for another channel (voice or E1
channel) to be automatically connected to the outbound call (Either to connect two
conversations together or to play a message to the answered party). However in the demo
program the setup message is largely redundant.

In response the CHANTASK sends back a C_PS_SETRESP message:

71,<result code>, <slot type>, <local_bus_slot> ,<vox_chan_used=>,
<defer_vox_routing_flag>

pl9

© Zentel Telecom Ltd., 2009

e The <result code> is O for sucessful setup or a negative error code (E.g. if <slot_type> not
supports)

e The <local_bus_sot> is the h.100 (or external bus slot) that the outbound E1 channel has
been nailed to.

e The <vox_chan_used=> is the actual voice channel that was used (only applies to R2 etc
channels)

e The <defer_routing_flag> is set to 1 if the inbound channel should defer listening to the
outbound channel until the first call progress message (e.g.C_PS_PROCEEDING,
C_PS_ALERTING etc) is received. This will happen in some protocols (like R2) where the
inbound caller would hear the exchange of R2 MF tones if the routing was done
immediately after the C_PS_SETRESP message was received. For ISDN, SS7 etc
<defer_routing_flag> is set to 0 so the H.100 bus routing connection can be made
immediately.

The next message recieved from the client task would be a C_PS_DIAL message which
instructs the outbound channel to dial a given number. The format of this message is as
follows:

60,<dest_tel>,<caller_ID>,<num_type>,<cli_pass>,<idd_prefix>[,<dest_subaddr>,<CLI_su
baddr=

The <dest_del= is the destination telephone number
The <caller ID=> is the caller id passed from the client application

e The <num_type> should be set to one of C_TYPE_LOCAL, C_TYPE_NATIONAL, or
C_TYPE_INTERNATIONAL as defined in DEMO.INC

e <cli_pass> should be set to 1 to pass the given caller ID or O to block caller ID
The <idd_prefex=> will be set to the prefix used for international calls (Eg 00 or 010 etc)
The <dest_subaddr> and <CLI_subaddr> allow for additional address information to be
sent (e.g. extension)

This message causes the program to actually initiate an outbound call on the E1 channel.
The code for this is as follows:

case C_PS DIAL:
// Check that the pstn call flag is in the correct state to receive a
C_PS DIAL message
if (pstn call flag eq PSTN CALL PROGRESS or pstn call flag eq
PSTN CALL MONITOR)
errlog(serv_name,": ERROR - GOT C PS DIAL DURING ALREADY ACTIVE
DIAL");
else
// Extract all the fields from the message
dest tel no=strtok(msg,",");
caller id=strtok(msg,",");
dest num type=strtok(msg,",")
cli pass=strtok(msg,",");
idd prefix=strtok(msg,",");
dest sub addr=strtok(msg,",");
caller sub addr=strtok(msg,",");

#H4###4#4# Normalise Destination Telephone number and set number
type #####4#
// 1f the destination number starts with idd prefix then remove it
and
if (substr(dest tel no,1,length(idd prefix)) streq idd prefix)
dest tel no=substr(dest tel no,length(idd prefix)+1);
debug (serv_name & ": Stripping IDD prefix from dest num gives "
& dest tel no);
dest_num_type=C_TYPE_INTERNATIONAL;
endif

// Assume its a national number if it is not specified
if (dest num type streq "")
dest num_ type=C TYPE NATIONAL;

p20

© Zentel Telecom Ltd., 2009

endif

######44## Convert internal number type to the Aculab ISDN number
type and plan number plan
if (dest _num type eq C_TYPE INTERNATIONAL)
dest ntype=NT INTERNATIONAL;
dest nplan=NP_UNKNOWN; // Hardcode this for now..
else if (dest ntype eq NT NATIONAL)
dest ntype=NT NATIONAL;
dest nplan=NP_ UNKNOWN; // Hardcode this for now..
else if (dest ntype eq NT SUBSCRIBER NUMBER)
dest ntype=NT SUBSCRIBER NUMBER;

dest nplan=NP_UNKNOWN; // Hardcode this for now..
// For any other type assume national
else

dest ntype=NT NATIONAL;

dest nplan=NP UNKNOWN; // Hardcode this for now..

endif endif endif

debug (serv_name & ": CALLER ID=" & caller id & " cli pass=" &
cli pass);

#4444 #4#+# Set the override caller ID (the one actually being sent
to the network) depending on the cli pass flag
// The cli pass flag defines how the caller ID is passed (0=None,
1=Use one in message, 2=use default)
if (not cli pass)
o _caller id="";
else if(cli pass eq 1)
o _caller id=caller id; # Use the passed CLI
else
o caller id=default cid; # Use the default CID
endif endif

#4444 #44#4# Update the status on the screen

scr_st2(line,11,"DIAL");
scr print(line,"","CID=" & o caller id & " TEL=" & dest tel no

"") .
’

########4# Setup the call and do the dial..
CCsetparm(port, channel, PARM TYPE OUT,CP Q931 DEST NUMBERING TYPE,dest ntype);
CCsetparm(port, channel, PARM TYPE OUT,CP Q931 DEST NUMBERING PLAN,dest nplan);

// Hard code these for now..
CCsetparm(port, channel,PARM TYPE OUT,

CP_Q931 ORIG NUMBERING TYPE, NT NATIONAL); # hard code for now
CCsetparm(port, channel,PARM TYPE OUT,
CP Q931 ORIG NUMBERING PLAN, NP UNKNOWN) ; # hard code for now

connected flag=0;
debug (serv_name & "Now making call, number = '" & dest tel no & "'
cid=" & o _caller id & " type=" & dest ntype & " plan=" & dest nplan);

rc=CCmkcall (port, channel, dest tel no,o caller id);

#H#######HF Clear the last event received variable and change the
pstn call flag status
LastEventCode = "";
pstn call flag=PSTN CALL PROGRESS; # We now have a call in
progress
endif

The last line of this code sets the pstn_call_flag to PSTN_CALL_PROGRESS so that the second
part of the loop will now check for changes in the state of the channel and pass these changes
back to the client task as call progress messages. Before looking at that code there is one

p21

© Zentel Telecom Ltd., 2009

more case statement which handles the receipt of a C_PS_ RELEASE statement. Note that if
the TCP/IP socket is unexpectedly closed by the client then the program simulates the receipt
of a C_PS_RELEASE statement (see the code at the top of the loop above). Here's where
the C_PS_RELEASE is handled:

case C_PS RELEASE:

Check for bad message
if (not pstn call flag)
errlog(serv_name,": ERROR - RECEIVED C PS RELEASE MESSAGE WITH NO
ACTIVE DIAL");
else
If call is in progress then hangup the call
if (pstn _call flag eq PSTN CALL PROGRESS or pstn call flag eq
PSTN CALL MONITOR)
CCdisconnect (port, channel, LC NORMAL) ;
connected flag=0;
wait idle then release();

// handle bi-directional channel (future use)
if (in_out flag <> DIR_OUT ONLY)
CCenablein (port, channel) ;
endif
endif

// Update the screen with new status
if (in_out flag eg DIR OUT ONLY)
scr_stl(line,"Idle");
else
scr_stl(line,"InOut");
endif

// If H.100 routing has been done then remove routing
if (link flag)
// Stop network from listening to anything...
CCunlisten (port, channel) ;
// reconnect any voice channel to the E1l channel
if (vox _chan > 0)
SMunlisten (vox_ chan) ;
Make vox listen to net again
SMlisten (vox_ chan,CCgetslot (port,channel)) ;
endif
link flag=0;
endif

// disconnect the accepted socket
Sclose (a_sock);
pstn _call flag = PSTN CALL IDLE;
return 0;

endif

So the C_PS_RELEASE message, once received, will cause the call to be disconnected (if it
hasn't already) then the call session is released, the H.100 bus routing is reset, the screen is
updated and the inbound TCP/IP socket is closed. The wait_idle_then_release() function,
does what it says, i.e it waits for the channel state to go IDLE then it calls the CCrelease()
function. This is done after a CCdisconnect() has been issued on the channel:

func wait_idle then release()
dec

var firststate:8;

var state:8;
end

firststate=CCstate (port, channel);
if (firststate <> CS_IDLE)

p22

© Zentel Telecom Ltd., 2009

// loop waiting for channel to go idle
while (1)
CCwait (port,channel,CC_WAIT FOREVER, &state,firststate);
if (state eqg CS_IDLE)
break;
else
firststate=state;
endif
// prevent tight loop so window messages can be processed
task sleep(1l);
endwhile
end

// State is IDLE so release..
CCrelease (port,channel);

endfunc

Once the C_PS_DIAL message has been received and an outbound call is in progress then the
second part of the loop checks for changes in the state of the call on the channel and passes
these changes to the client task as call progress messages (C_PS_ALERTING,
C_PS_PROCEEDING etc). The code for this is as follows:

##4### 444444 POLL THE CHANNEL TO CHECK FOR EVENTS ###########4#4H4#444H444#44
if (pstn_call flag eg PSTN_CALL PROGRESS)
EventCode = CCstate(port, channel);

// check is new event has been received
if (LastEventCode <> EventCode)
LastEventCode = EventCode;
ldatetime = sys date() & "," & sys_time();

switch (EventCode)
case CS CALL CONNECTED: # call answered
#H#####4#4## Get the start date and time of the
call (for working out duration later)
ssdate=sys date();
sstime=sys time();

connected flag=1l;

#H########4#+ Update the screen
status. . ####EH#SHHHEHH

debug (serv_name & ": Call state CONNECTED");

scr_st2(line, 2, "ANSW");

########### Send back C_PS CONNECTED message.
FHHE#H#

msg = C_PS CONNECTED & "," & EventData & "," &
ldatetime;

rc = TCPsend(a_sock,msg);

#H####4#### ILf BUS slot was given in SETUP message
then do bus connection here!
if(tslot type eq TS TYPE SC)
debug (serv_name & ": SCB: making port=" &
port & " channel=" & channel & " listen to (sent) tslot no=" & tslot no);
Don't route timesslot if -1 specified
if (tslot no >= 0)
CCunlisten (port, channel) ;
logical bus slot=24*4096+tslot no;
CClisten (port, channel, logical bus_slot);
link flag=1;
endif
else if (tslot type eq TS TYPE LOGICAL)

p23

© Zentel Telecom Ltd., 2009

debug (serv_name & ": !!!LOGICAL: making port="
& port & " channel=" & channel & " listen to (sent) tslot no=" & tslot no);
if (tslot no >=0)
CCunlisten (port, channel) ;
CClisten (port, channel, tslot no);
link flag=1;
endif
else
errlog (serv_name, "UNSUPPORTED BUS
TYPE=", tslot type);
endif endif
This shouldn't happen as we should get a DISCONNECT
first - handle it just in case
case CS_IDLE:
cause=NORMAL CLEARING;
debug (serv_name & ": Call state IDLE WITHOUT
DISCONNECT!") ;
if (ssdate streg "")
call duration = 0;
else
call duration =
timesub (date () ,time (), ssdate, sstime) ;
endif

scr st2(line, 3, "HGUP");
ssdate = "";

// Send back C_PS DISCONNECT message to
controlling task

msg = C_PS DISCONNECTED & "," & cause & "," &
ldatetime & "," & call duration;

rc = TCPsend(a_sock,msqg);

case CS REMOTE DISCONNECT:

debug (serv_name & ": Call state DISCONNECTED");

cause=CCgetcause (port, channel, 1) ;

debug (serv_name & " DISCONNECTED gave cause=" &
cause) ;

if (ssdate streg "")
call duration = 0;
else
call duration =
timesub (date (), time (), ssdate,sstime) ;
endif

scr_st2(line, 3, "HGUP");
ssdate = "";

// Send back C_PS DISCONNECT message to
controlling task

msg = C_PS DISCONNECTED & "," & cause & "," &
ldatetime & "," & call duration;

rc = TCPsend(a_sock,msg);

case CS WAIT FOR OUTGOING:

debug (serv_name & ": Call state
WAIT FOR OUTGOING");
case CS_OUTGOING RINGING: # destination
terminal got call request
debug (serv_name & ": Call state OUTGOING RINGING

received") ;

EventData=0;

scr_st2(line, 12, "RING");

msg = C_PS ALERTING & "," & EventData & "," &
ldatetime;

rc = TCPsend(a_sock,msq);

case CS_PROGRESS: # received progress event
debug (serv_name & ": Call state PROGRESSING

p24

© Zentel Telecom Ltd., 2009

received") ;
EventData=0;
msg = C_PS PROGRESSING & "," & EventData & "," &
ldatetime;
rc = TCPsend(a_sock,msq);
case CS_OUTGOING PROCEEDING: # network accepted
call request
debug (serv_name & ": Call state PROCEEDING
received") ;
EventData=0;
msg = C_PS PROCEEDING & "," & EventData & "," &
ldatetime;
rc = TCPsend(a_sock,msq);
case CS _NOTIFY:
debug (serv_name & ": Call state NOTIFY received");
EventData=0;
msg = C_PS NOTIFY & "," & EventData & "," &
ldatetime;
rc = TCPsend(a sock,msqg);
default:
errlog(serv_name & "Unexpected event ", EventCode);
endswitch
endif
endif

So in all cases above, once a change in state is received then a call progress message is sent
back to the client task.

All the call progress messages have the format:
<Progress type>,<Event Data>,<timestamp: DDMMYYHHMMSS>

With the exception of the C_PS_ DISCONNECTED message which has the call duration
appended as follows:

C_PS_DISCONNECTED,<Event Data>,<timestamp: DDMMYYHHMMSS>,<Call duration>

For calls that did not get answered then the duration will be set to O.

If the channel state is changed to CS_CONNECTED then any H.100 routing is done to connect
the conversations (only if bus information was supplied in the C_PS_SETUP message) and the

screen is updated.

If the channel state is changed to CS_DISCONNECTED then the call duration is calculated (if
any) and the screen status is also updated.

p25

© Zentel Telecom Ltd., 2009

The check inbound() function

The following section describes the check_inbound() function which waits for an inbound call
on the E1 channel and once a call has been received it will spawn the IVR task that will then
play messages and take DTMF digits etc. The IVR task that is spawned is specified in the
DEMO.CFG file and by default is the IN_IVR_TASK.TES program supplied with the demo
application.

After spawning the IVR task the program then goes into a loop alternatively waiting for a
message from the IVR task or for a hangup signal on the E1 channel.

The first thing the function does is check whether the channel is an outbound only channel
and if so it simply returns:

// Return immediately if this is an outbound only channel
if(in_out_flag eq DIR_OUT_ONLY)

return O;
endif

Then the function goes into a loop waiting for an inbound call to arrive at the channel. If
the channel is inbound then the CCwait() function will block waiting for an inbound call.
There is also code here to handle the cased of a bi-directional channel in which case the
CCstate() call is used to poll the channel to see if there is an outbound call and the function
will return back to the amin loop if not:

// If this is an inbound chamnel then we can block task and wait
if (in out flag eq DIR IN CONLY)
// Loop walting for incaning call
vhile(1)
debug (serv name & " About to CCWait (FOREVER)");
x=CCwait (port, channel,CC WAIT FOREVER, &event) ;
debug (serv name & " OOWait () retumed with event=" & event);

if¢e0)
if (event eq CS INCOMING CALL DET)
ek
else
aoplog (serv nare & ": port=",port," chammel=",channel, " got unexpected event=",event) ;
adif
// prevnt tidht lop
tesk slesp(@);
adif
endvhile
otherwise we poll for incaming calls
else

Check to see if there is an incaming call.
if (CCstate(port,channel) <> CS INCOMING CALL DET)
retum 0;
edif
edif

If an inbound call was detected by the channel state becoming CS_INCOMING_CALL_DET then
the DID and CLI are extracted, the screen updated and the call is accepted. In this version
of the demo there is no attempt to inspect the CLI or DID make a decision about which IVR
task to spawn or whether to reject the call. Instead the call is always accepted with the
CCaccept() function:

// Get ANI and DNIS .
p26

© Zentel Telecom Ltd., 2009

errctl();

CCgetparm (port, channel,CP_ORIGINATING ADDR, &ANT) ;
erctl (0);

CCgetparm (port, channel, CP_DESTINATION ADDR, &did) ;

debug (serv name & " DID=" & did & " CID=" & ANI);
w_p]:jl]t(]jre, "","D:IDzl" & dj_d & " CﬂI):'" & H\]I & "l","")’.

// In DEMO we don't check DID or ANI we just answer the call
x=CCacoept (port, channel);
ifx < 0)
errlog(serv name & " Port=",port," channel=",channel," (Cacoept failed.. releasing the call");
CCdisconnect (port, channel, LC CALL REJECTED);
wait idle then release();

re-engble irbourd calls
debug (serv name & "Doing Enable in on port=" & port & " channel=" & channel);
x=Cenablein (port, chamrel) ;

// Resetirg the screen
if (in out flag eq DIR IN ONLY)
scr st (lire, 'VBit") ;
scr print (Line, ", "Waiting For Lire Seiare....","");
else if (in out flag eq DIR OUT ONLY)
scr st (Lire, "I ;
else
scr stl (lire, "It ;
edif erdif

reum -1;
adif

Once the call has been accepted then the IVR task specified in the DEMO.CFG (passed down
as an argument from DEMO.TES) is spawned, and the screen status is updated. If the
program could not spawn the IVR application then the channel is reset:

FHAF#AEFSHFH S #HHHHH Spawn INBOUND IVR TASK #########H#HHFHHH4#H
child pid=task spawn (ivr task,line,port,channel,vox chan);

// If we couldn't spann the child task then release the call ..
if (child pid < 0)
errlog(serv name & " Port=",port," channel=",channel," Cacoept failed.. releasing the call");
CCdisconnect (port, channel, LC CALL REJECTED);
wait idle then release();

re-engble irbourd calls
debug (serv name & "Doing Enable in on port=" & port & " channel=" & channel);
x=Cenablein (port, chanrel) ;

// Resetirg the screen
if (in out flag eq DIR IN ONLY)
scr st (Lire, "Weit") ;
scr prnt (Line, ™', "aiting For Lire Seizre....","™");
else if (in out flag eq DIR OUT ONLY)
s st (lire, "Idle") ;
else
scr stl (lire, "TrOut") ;
edif endif

=um -1;
edif

scr st2 (line, "INV", ivr task) ;

p27

© Zentel Telecom Ltd., 2009

Next the function calls the await_msgs() function, which loops waiting for either a hangup
signal on the E1 channel or a message from the IVR task. In this case the messages
received from the IVR task are passed using the Telecom Engine Internal messaging functions
from the CXMSG.DLL library. Here is the code for this loop:

// Loop forever waiting for messages and/or hangup signal
vhile(l)
// check for disconmnect
a x=CCstate (port, channel) ;
if (a_x eq CS_REMOTE DISCONNECT)
task hangup(a pid);
debug (serv name & " Detected hangup on Line " & line & " Issued task hangup on pic=" & a pid);
endif

a msg=msg_get (0);
// IF we didn't get anything for one hour this looks suspicious (IVR task hung?)
// In this version just set the status to " " in red as an alert
J_f(a_msg St‘ﬁ&l "u)
if (sys tmrsecs() >= 3600)
scr st2 (lirg, 12,"——");
Sys tmstart();
adif
slesp@);
aotine;
endif

// Extract fields from received messace. .
Stltd(("", "") ,.
a and=strtok(a msg,",");
a cause=strtok(a msg,",");
switch(a and)
// Hangup (and go blocking?? (Depends on protocol))
case GEN HANGUP:
debug (serv_name & " Received GEN HANGUP message on Line " & line);
CCdisconnect (port, channel, a cause,l);
a hflag=l;
case GEN RESTART:
debug (serv_name & " GENERIC: received GEN RESTART message on Line " & line);
Send restart acknowlegment...
msg_put (msg_pid(),GEN_ACK) ;
if@hflageg0)
CCdisconnect (port, chamnel, a cause,l);
ahflayd;
adif

Clear any DIMF digits
if (vox chan)
Selrtaes (vax den) ;
adif

// Reset the scbus routing in case it was changed...
(Cunlisten (port, channel) ;
if fvox den > 0)

Mnlisten (vax den) ;

Ilisten (vox chan, QCgetslot (port, dharrel)) ;

adif
wait idle then release();
Do we nead to re—ensble inbourd calls?

if (in out flag < DIR QUT ONLY)
debug (serv name & "Doing Enable in on port=" & port & " chammel=" & chamrel);

p28

© Zentel Telecom Ltd., 2009

(Cerdbledn (port, darel) ;

// Fesetiirg the screen
if (in aut flag eg DIR IN QNLY)
scr st (lire, "Wait") ;
scr print (line, ", "Weiting For Lire Seizre....","™);
else if (in out flag eq DIR OUT CNLY)
s st (Lire, "IdE");
else
scr st (lire, "TrQut™) ;
adif edif
retum 0;
cefault:
errlog(serv name & ": REceive invalid protocol message='" & amsg & "'");
endswitch

task sleep(l); # prevent tight looping
endwhile

The two messages that can be received are:
GEN_HANGUP - this causes the channel to be disconnected
GEN_RESTART - this causes the channel to be released and made ready to accept a new

inbound call.

The wait_idle_then_release() function is described above in the description of the
check_outbound() function.

p29

© Zentel Telecom Ltd., 2009

OUT_IVR_TASK.TES

OUT _IVR_TASK program description

The OUT_IVR_TASK.TES program is the client program that takes control of an outbound
channel and causes a outbound call to be dialled on that channel using the simplified internal
TCP/IP protocol described above in the CHANTASK.TES program description.

After initialisation the program simply pauses a random amount of time between 10 and 90
seconds before connecting to the CHANTASK task that is in charge of the channel and issuing
a request for an outbound call to be initiated on the channel. = Once connected the program
will again pause a random amount of time between 10 and 90 seconds before issuing a
hangup request. The program will then go back to the beginning and start the sequence
again.

Therefore for outbound channels the demo application will continuously dial out on those
channels at random intervals until the program is terminated.

After some trivial initalisation the first part of the code retrieves the arguments passed down
from the CHANTASK program, which provides information about which channel the task is in
control of:

// Get the passed argurents. .
serv name=arg(0) ;
liresarg(1);
port=arg (2) ;
channel=arg (3) ;

vox charmarg (4) ;

Next the program retrieves the process ID of the parent CHANTASK task so that the TCP/IP
port can be calculated (the listening port will be 7000 + taskIiD). It the obtains a random
number and pauses for this amount of seconds:

// Get the task ID of parent (used to get the listen port of chamnel task)
parent pid=task parentid();

// Pause for a random number of seconds between 1 and 90
md seed();

int pause secs;
pause secs=rand(10,90) ;

debug (serv name & "About to pause for " & pause secs & " seconds..");

// Pause for this nurber of seconds
task sleep (pause secs*10);

The rnd_seed() and rand() functions are simple pseudo random number generator functions
found in the common function directory.

Next the program calls the outbound call setup sequence:

// Now initiate the call seup-up sequence..
x=out_setup() ;
ifx<0)
// Force arrselve into ansignal

task hangup (task getpid());
edif

p30

© Zentel Telecom Ltd., 2009

The out_setup() function initiates the setup sequence which consists of connecting to the
parent CHANTASK task that is in charge of the outbound channel, and exchanging the

C_PS _SETUP and C_PS_SETRESP messages. A more detailed description of the
out_setup() function will be given later. Note that if an error occurs then the task_hangup()
function is called which forces the program to jump onto the onsignal function to clear down
the call.

After the setup segence has completed then the dial sequence is started through the
out_dial() function:

// Now send the dial request to the channel task
x=out dial ("0123456789","0987654321") ;
ifx<0)
task hangup (task getpid()) ;
adif

This out_dial() simply sends the C_PS_DIAL message to the CHANTASK task (the out_dial()
function will be described later). Again, any error results in the task_hangup() function
forcing the program to jump into the onsignal function.

Next a loop is entered waiting for call progress messages to be received from the CHANTASK
task showing the outbound call in progress. The out_progress() function simply waits for
TCP/IP messages using the TCPread() function and will be described later. The loop will
be broken once the C_PS_CONNECTED message is received to indicate that the outbound call
has been answered. If a C_PS_DISCONNECT message is received then task _hangup()
forces a jump to onsignal to clear down the call.

// Loop getting call progress fram cuthound channel
while(l)
x=out progress (&cp_type, &cp_data, &cp date, &cp time, &cp duration);
if&k <0
task hangup (task getpid()) ;
adif

ificp type eq C PS CONNECTED)
bresk;
else if (cp type eq C PS DISCONNECTED)
task hangup (task getpid()) ;
adif edif

// Prevent tidht logp
task slesp(l);
endwhile

The obtains another random number of seconds and then loops waiting for this number of
seconds to expire or a C_PS DISCONNECT message to be received over the TCP/IP connection
from the CHANTASK task:

// Get a random number of seconds to pause before hanging up...
pause secs=rand (10, 90) ;

e start () ;
// Loop waiting for hangup indication or timecut
vhile(1)
// creck for tiner..
if (tmr secs() > pause secs)
task hangup (task getpid());
adhif
x=out progress (&cp_type, &cp _data, &cp date, &cp time, &cp duration);

p31

© Zentel Telecom Ltd., 2009

if&<0)

task hangup (task getpid()) ;
edif

if (cp_type eg C_ PBISCONNECTED)

task hargup (task getpid());
adif

// Prevert tight lap
task sleep(l);
endwhile
endmain

The onsignal function (which is jumped to whenever as task_hagup() function is called)
provides a single restart point for the program, when the outbbound call is released and the
program is restarted ready to initiate another dial on the outbound channel. The
out_release() carries out the release of the outbound call and will be described later:

// This will be jumped to as soon as hangup is received..
onsignal

// Release the outbound call
aut release();

// end the gplication
aoplog ("Restarting the goplication");
restart;

endonsignal

The following sections describe in more detail the following functions used above:

out_setup()
out_dial()
out_progress()
out_release()

p32

© Zentel Telecom Ltd., 2009

out_setup() function description

The out_setup() function is responsible for establishing a TCP/IP connection to the CHANTASK
task and to exchange the C_PS_SETUP and C_PS_SETRESP messages. Although the
exchange of these messages is largely redundant in the demo application (since we are not
connecting two conversations together) it is still useful to look at the function code tio
understand how the socket libary works:

First the Sconnect() call is used to make a TCP/IP connection and will return either a negative
error code or a connecting socket. The function will return immediately, even though the
connection might not have been fully established, so the Scheck() function used to check for
when the connection is fully established (or an error occurs).

G i i
Setup the Outbound call by making socket connection and then sending

the initial setup message to exchange information about h.100

timeslots etc
S i i
func out setup()

it ro;

var out command:10;

var out sess:10;

FHEHH R R R R
Now Initiate the dial sequence. The chanrel task is always waiting on
port 6000+ask id

out progress=0;

debug (serv name & " SETUP About to connected to port=" & (PORT OFFStparent pid));
// Make a socket connection to channel control task on port=6000+task id
out_sock=Sconnect ("localhost", PORT OFFS+parent pid);

// Loop walting for connection or error
while (1)
// Check if socket is ready for write (connection carplete)
x=Scheck (out sock, 1) ;
ifxegl)
bregk;
endif

// Check for error
x=Scheck (out_sock, 2) ;
ifxegl)
errlog(serv name & ": Error could not comnect to channel task on port=" &
(PORT OFFS+parent pid));
enm -
endif
// prevent tight loop to allow windows to receive messages..
task sleep(1);
encvhile
if (out sock < 0)
errlog(serv name & ": failed to make socket commection to channel control task on
port=",PORT OFFS+parent pid);
rem -1;
adif
debug (serv_name & " SETUP connected to port=" & (PORT OFFS+parent pid));

// If we get here then we have made a socket connection..

p33

© Zentel Telecom Ltd., 2009

out progress=l; // socket connection mede (fram this point jump to onsignal to force cleardown) ..

The next part of the function sends the C_PS_SETUP message and then waits for the response
using the TCPsend() and TCPrecv() functions:

// Serd setip request... fommet is:
// C_PS SETUP,<sessionID>,<Bus type>,<Bus Timeslot>,<offered vox chan>
out_msg=C_PS_SETUP & "," & TS TYPE LOGICAL & ",-1,0";

rc=TCPsend (out sock, out msg) ;
if e <0)
errlog(serv name & ": Failed to send SETUP message: err=",rc);
// Force jurp to onsigmalto clear down..

task hangup (task getpid()) ;
adif

out progress=2; // Sent setup request..

e start();
Ol;[t_r[.sg:ll";
out ansg="";
while (1)
rc=TCPread (out_sock, &out msg, &out omsg, 0) ;

// Check for loss of connection
if (e < 0)
errlog(serv name & ": Socket disconnect during SETUP exchange: err",rc);
retim -1;
// If there was a message then extract the conmand
else if(rc eg 1)
debug (serv_name & ": SETUP: RECEIVED MESSAGE=" & out msg);
stk (™,"™) ;
out command=strtok (out msg,",");
break;
endif endif

FHEFHE S 444 CHECK FOR TIMEOUT IF NO MESSAGE ########## 4444
if (tr secs() > 195)
errlog(serv name,": SEIUP - Timeout waiting for SETUPRESP from chamnel task: line=",line);
rehum -1;
endif
task sleep(1);
entwhile

The next step of the function is to check that the correct respsonse has been received and to
return to the main check_inbound() function:

switch (out command)
case C_PS SETRESP:
debug (serv_name & "SETUP: GOT SETUP RESP - msg = " & out msg);

// Bxtract the chta fields
// Get tre retim coce
out setuprc=strtok (out msg,",");

// Qreck for setip error of sare kind..
if (out setupre <> 0)
errlog (serv name, "SETUP Failed result=" & out setuprc);
retum —2;
adif

p34

© Zentel Telecom Ltd., 2009

art progress=3; // Set flag to indicate set-p caplete
// Setip suceeded - extract rest of fields

// Get the bus timeslot and type (E.g. LOGICAL, SCBUS etc)
out slottypesstrtok (cut msg,",") ;

aut slot=strtok(out msg,",");

out voxchansstrtok (out msg,",");

out scdefer=strtok (cut msg, ", ") ;

debug ("SETUP: dbtained slottype=" & out slottype);
debug ("SETUP: dotained slot =" & aut slot);

debug ("SETUP: cbtained voxchan =" & out voxchan) ;

retum 1;
cefault:

errlog(serv name,": SETUP","Getting nonsense while waiting for SETRESP! msg=" & out msg);
retm -1;
endswitch

endfunc // End of the out setp() function

p35

© Zentel Telecom Ltd., 2009

out_dial() function description

The out_dial() function sends the C_PS_DIAL message over the socket connection to initiate
an outbound call on the channel.

The code is as follows:

func out dial (dest telno,orig telno)

int r;
out msg = C PS DIAL & "," & dest telno & "," & orig telno & "," & NT NATIONAL & "," & 1 & "," & "00";
rc = TCPsend (out sock,out msg) ;

if (e < 0)
errlog(serv name & ": Failed to send DIAL message: err=",rc);
// Force jurp to onsigmalto clear down..
task hangup (task getpid()) ;

edif

out progress=4; // Dial request has been sent...

retum 0;

endfunc

p36

© Zentel Telecom Ltd., 2009

out_ progress() function description

The out_progress() function simply waits for a call progress message, extracts the time-stamp
and event data then returns this information to the calling program. All arguments passed
to this function are pointers to variables to contain the results:

func out progress (px event,px data,px ldate,px ltime,px duration)
it ro;

// Check for a call progress messages
rc = TCPread (out sock, &out msg, &out omsg, 0) ;
ifc<0)
errlog(serv name,": PROGRESS - Error reading socket error=",rc);
retum -1;
ele if(rc egl)
strtck (™, ™) ;
*px event=strtok (ocut msg,",");
else
retum 0;
adif edif

out lastmsg=out msg;
switch (*px _event)
case C _PS ALERTING:
*px data=strtok (out msg,",");
*px ldatesstrtok (out msg,",") ;
*pxItime=strtok (out msg,",");
debug ("XXXPROGRESS: check inbound(): GOT ALERTING: data code=" & *px data);
retum 1;
case C _PS PROCEEDING:
debug ("XXXPROGRESS: check inbound(): GOT PROCEEDING");
*px_datasstrtok (out msg,",") ;
*px ldate=strtok (out msg,",") ;
*px_ ltdmesstrtok (out msg, ", ") ;
reim 1;

case C_PS PROGRESSING:
debug ("XXXPROGRESS: check inbound(): GOT PROGRESSING");
*px data=strtok (out msg,",");
*px ldatesstrtok (out msg,",") ;
*px Itime=strtok (out msg,",");
retum 1;

case C_PS CONNECTED:
debug ("XXXPROGRESS: check inbound(): GOT CONNECTED");
*px data=strtok (out msg,",");
*px ldate=strtok (out msg,",");
*px_ ltdmesstrtok (out msg, ", ") ;
out progress=5; # We are connected
retum 2;
case C_PS DISCONNECTED:
debug ("XXXPROGRESS: check inbound(): GOT DISCONNECTED") ;
*px_datasstrtok (out msg,",") ;
*px ldatesstrtok (out msg,",");
*px_ ltdmesstrtok (out msg, ", ") ;
*px_duratiorsstrtok (out msg,",");

retum 1;
case C_PS TASKFAILURE:
debug ("XXXPROGRESS: check inbound(): GOT TASKFAILURE") ;
*x_datasstrtok (out msg,",");

ﬁﬁﬁdﬂe%biddaﬁgg;%"n

p37

© Zentel Telecom Ltd., 2009

*ox Itimesstrtok (out msg, ", ") ;

retum 1;
default:
errlog(serv name,": PROGRESS Received invalid message=" & out msg);

retum 0;

endswitch
end

p38

© Zentel Telecom Ltd., 2009

out_release() function description

The out_release() function relies on the global out_progress variable which is maintained by
all of the other out_xxxx() functions as follows. Depending on which state the outbound call
has reached then function will either close the socket connection of will send as
C_PS_RELEASE message then close the socket connection:

// this function hangs up and releases socket etc.
func out release()
int x;

switch (cut progress)
ae 0:
reim O;
// We have connected to channel task
ae 1:
Sclose (ot sock) ;
// We have sent setup request..
ae 2:
Sclose (ot sock) ;

// We have received setup response
e 3
Sclose (out sock);

// We have sent dial request
e 4:
// Need to serd release request to clear down call
out msg = C_PS RELEASE & "," & NORMAL CLEARING;
rc = TCPsend (out sock,out msg) ;
Sclose (out_sock) ;
// Carection established. .
e 5
// Need to serd release request to clear down call
out msg = C PS RELEASE & "," & NORMAL CLEARING;
rc = TCPsend (out sock, out msg) ;
Sclose (out_sock) ;
endswitch
out progress=0;

retim 0;
endfunc

p39

© Zentel Telecom Ltd., 2009

IN_IVR_TASK.TES

IN_IVR_TASK.TES

The IN_IVR_TASK.TES is the program that is spawned when an inbound call is received. It
simply plays a voice file (DEMO.VOX) and then sends a request to the CHANTASK.TES task to
hangup the call and reset the channel ready to take another call.

After some trivial initialisation the program first reads the arguments that have been passed
to it from the CHANTASK task:

// Get the passed argurents..
serv name=arg(0) ;
liresarg(1);

port=arg (2) ;

channel=arg (3) ;

vox charFarg(4) ;

It then simply plays the voice file DEMO.VOX, pauses for 20 seconds, then sends a message to
the controlling CHANTASK task to hangup the channel:

// Play a wice file..
SMplay (vox_chan, "DEMUQX") ;

// Pause for 20 seconds
slesp(200) ;

// Get the Proccess ID of parent task
parent pid=task parentid();

// Send hangup request to parent tasl
msg_put (parent pid, GEN HANGUP) ;

// Force ourselve into onsigral
task hangup (task getpid());

The final task_hangup() call forces the program to jump to the onsignal function which
requests that the channel be releases and reset ready for another call:

// This will be jumped to as soon as hangup is received..

onsignal
// Get the Proccess ID of parent task

parent pid=task parentid();

// Send GEN RESTART message
msg_put (parent pid, GEN RESTART) ;

// Wait for Ack message
msg=mmsg_get (60) ;

// end the gplication
staor
endonsignal

Notice that the messages are sent to the CHANTASK task using internal Telecom Engine

p40

© Zentel Telecom Ltd., 2009

messages frmo the CXMSG.DLL library.

p4l

© Zentel Telecom Ltd., 2009

SCRDEMO.TES

SCRDEMO.TES program description

The SCRDEMO.TES program is in charge of maintaining the application terminal screen.
There are a number of utility function provided with the DEMO application and that reside in
the common subdirectory that wotk with the SCRDEMO.TES program to allow the screen
status to be updated.

The SCRDEMO splits the screen into four separate areas shown in the screen shot below:

Trunk Overview Area

I Application Terminal [20081018 145333.2]

Left Channel Status Right Channel

§ Window Status Window
Scrolling Log Area

The Trunk overview area allows a complete quick glance summary showing what is happening
on every channel of each trunk. Each line of the Trunk overview area shows the logical
channel number for the first channel on the trunk followed by a single character channel
status indicator (which will be the first character of the channel status from the left or right
channel status windows). By appropriate use of colour this can provide a very useful
indicator of what is happening on each channel of the trunk. In the DEMO program, inbound
channels with active calls have the colour black on whitewhereas the outbound channels have
various colours on a black background (E.g. Red on black for RING, green on black for
ANSWER, cyan on black for HANGUP etc).

The left and right channel status windows show more detailed channel status information
about what is happening on each channel and are individually scrollable by the SCRDEMO.TES
program. The channel status window consists of three parts (from left to right):

a) Channel number
b) Five character channel status

p42

© Zentel Telecom Ltd., 2009

c) Twenty character channel status detail

In the DEMO program the channels are split 50/50 between the left and right channel status
windows and the number of channels will thus depend on the DEMO.CFG file.

The Scrolling Log Area is the only part of the screen that is written to directly by other
programs apart from the SCRDEMO.TES program through the applog(), errlog(), tracelog()
function calls provided by the CXTERMX.DLL library.

The functions supplied with the DEMO program that allow for the screen to be updated are as
follows:

scr_print(line,colour,detail_text,window_id)
scr_stat(stat_text)

sc_statl(line,stat_text)
scr_stat2(line,colour,stat_text)

scr_print() writes to the detailed status part of the status window for the specified logical
channel in the specified colour. The window_id argument is not used by the SCRDEMO.TES
program, and is for future use.

scr_stat() writes to the 5 character abbreviated status part of the status area for the current
logical channel (defined by the global line variable passed as an argument). It uses the
default screen colour.

scr_statl() allows the logical line number to be specified rather than using the current one
specified by the line global variable. It uses the default screen colour.

scr_stat2() allows both the logical line number to be specified as well as the colour that should
be used.

The way these functions communicate with the SCRDEMO.TES program is through a set of
global arrays declared by the SCRDEMO.TES program using the global array functions frmo
the CXGLB.DLL libarary.

The code for the scr_print() function is as follows:

Function: scr print
synopsis: include "screen.inc"
scr print (@ line,a attr,a msg,a wi)
a lire - The lire nurer
a attr - Tre colarr (o ™) for default coloar
a msg - The messace to write
a window - The the window number to write to (unused in SCRDEMO.TES)
func scr print (a line,a attr,a msg,a window)
task defersig("(");
array set ("lire text",a line,a msg);
array set ("lire color',a line,a attr);
array set ("lire txflag",a lire,1);
task defersig(")");

H o S

end

The code for the scr_stat2() function is as follows:

scr stat: Rut short (o to 5 dharacters) status field for line
#

p43

© Zentel Telecom Ltd., 2009

ARGUMENTS

a lire Tre lire ruer
a attr Colaur to use

a msg Message string

func scr stat2(a line,a attr,a msg)
task defersig(" (");
array set("lire stat",a line,a msg);
array set("lire attr",a lire,a attr);
array set ("lire stflag,a lire,1);
task defersig(")");
end

Notice that both functions use the task_defersig() function to prevent a hangup signal from
interrupting the code block before it has completed. There are then four global arrays
that can be set to update the screen:

"line_text" - This array holds the detail text for a particular logical line

"line_color" - This array holds the colour attribute that is to be used for the detail text
display
"line_txtflg" - Set this to 1 to indicate to the SCRDEMO.TES that the detail text for this

logical line has changed

"line_stat" - This array holds the abbreviated 5 character status for the logical line
"line_attr" - This array holds the colour attribrute that is to be used for the status display
"line_stflag” - Set this to 1 to indicate to the SCRDEMO.TES that the status test for this
logical line has changed

From the above code it can probably be guessed that the SCRDEMO.TES simply polls these
arrays looking for any elements in the "line_txtflg" or "line_stflag" set to 1. If any are found
then the respective status or detail text on the screen is updated and the "line_txtflg" or
"line_stflag" array element is set back to O.

There is probably not much to be gained from showing the entire code from the
SCRDEMO.TES program since much of the code is dedicated to calculating the offsets on the
screen where the channel status and/or detail should be written. Instead it is probably more
useful to just look at the important parts of the program.

After some trivial initialisation the first thing the SCRDEMO program does is to declare the
global arrays described above:

Allocate the screen arrays..
array dim("line stat",1024,10);
array dim("lire attr",1024,8);

array dim("line text",1024,80);
array dim("line color",1024,8);
array dim("lire stflag",1024,1); # change flag for status
array dim("line txflag",1024,1); # change flag for text

The array_dim(name,num_elements,length) function allocates a dynamic global array with
the number of elements given by num_elements where the length of each element is given
by length. As can be seen above, the maximum number of logical channels that can be
handled by the SCRDEMO.TES program is 1024.

Next the SCRDEMO.TES retrieved the arguments passed down to it from the DEMO.TES
program:

Get the startup parms
bsv parml=arg(l);

bsv parmZ=arg(2) ;
bsv parm3=arg(3) ;

p44

© Zentel Telecom Ltd., 2009

stk (™,"™);

trunk area depth=strtok (bsv parml,",");

if (trunk area depth > 32)
trunk area depth=32;

else if (trunk area depth < 1)
trunk area depth=5;

endif endif

fix the lire depth
line depth=INE DEPTH;

St[td(("", "") ,.

llire start=strtok (osv pami2,",");
1lire tot=strtok (bsv parm2,",") ;
stk (™, ™);

rline startsstrtck(osv pam3,",");
rlire tot=strtok (osv pams3,",");

The arguments passed down are as follows:

argl=<number of trunks>

arg2=<start line of left channel status win>,<number lines in left win>
arg3=<start line of right channel status win>,<number lines in right win>

arg2 and arg3 contain two values each separated by commas so the strtok() function is used

to extract the individual values.

After this the program enters the main loop where it alternatively waits for internal telecom
engin messages to arrive and/or refreshes the screen by iterating over the above arrays to

update the screen:

Now loop waiting for commands
while (1)
#apolog ("Maiting for message");
r msgmsg get (1) ;
if (r mey streg ™)
goto refresh;
adif

r andssubstr (r msg, 1,2) ;
switch (r ard)

case SCR INIT:
Init screen();

The calling task will ke waiting for a response so give it one!

msg put (usg pid(),"!") ;
case SCR TRUNK:
Get the trunk dhamrel start and chanrel range
stk (™,™);
ot trkst;
trurnk start [tot trunks]=strtok (suostr (r msg, 4),",") ;
trunk dhans[tot trunks]=strtok (suostr (r meg, 4),",") ;

Init trk(tet tnrks);

msg put (msg pid(),"!") ;
case SCR LEFT:
curr scroll=IFFT SIDE; # Left screen
rext screen (LEFT SITE) ;

Right select
case SCR RIGHT:
curr scroll=RIGHT SIDE; # Left screen
next screen (RIGHT SITE);

p45

© Zentel Telecom Ltd., 2009

case SCR BOTH:
curr_scroll=BOTH SIDES; # both sides of screen
next screen (BOTH SIDES);
case SCR_GOTO:
goto line=substr (r msg, 4,3);
#aplog ("Goto line=" & goto line);
Which sice is it?
if (goto lire >= 1lire start and goto lire <= (1lire start+llire tot-1))
lcurr page=(goto line-1line start)/line depthtl;
#applog ("Calc new lcurr page=" & lcurr page);
draw left();

else if(goto line >= rlire start and goto lire <= (rlire starttrlire tot-1))
reurr page=(goto line-rline start)/line depthtl;
#applog("Calc new rcurr page=" & rcurr page);
draw right ();
adif edif
Toggle screen formats
case SCR STYLE:

do rothing. .

case SCR NEXT:
#applog ("SCRORV2: Next received");
rext screen(Qrr scroll) ;

case SCR PREV:
prev_screen() ;

case SCR_REDRAW:
redraw_screen() ;

erdswitch

This is the refresh screen part..
refresh:
tirer refresh();
endwhile

The messages that can be received by the SCRDEMO.TES program allow for the screen to be
initialised and then for another task to accept commands from the keyboard and to scroll the
left and right status windows (or both) or to go to a specific line number in the left or right
status windows.

There is no keyboard interface task provided with this version of the DEMO program and then

only message that is used is the SCR_INIT message which is sent from the DEMO.TES
program at startup and causes the screen to be initialised.

O

p46

© Zentel Telecom Ltd., 2009

COMMAND.TES

COMMAND.TES program description

The COMMAND.TEX program allows for the terminal console to be placed in ‘command’ mode
and accept input from the keyboard.

In order to enter ‘command’' mode the user would hit the colon (":") key, then type in the
command followed by the <ENTER=> key. To escape from 'command’ mode the user would
hit the <ESC=> key.

The commands that have been provided in the COMMAND.TEX program are simply to allow
the right hand side of the screen to be scrolled if there are more channels specified in the
DEMO.CFG file than can be simultaneously displayed.

The commands accepted by the COMMAND.TEX program are as follows:

| <ENTER> - Scroll the left hand list of channels

r <ENTER> - Scroll the right hand list of channels

b <ENTER> - Scroll both left and right hand lists of channels

g [channel] <ENTER> - Goto the given [channel] number (ie scroll co this channel is at
the top of list)

<ENTER=> - Scroll the left, right or both lists depending on the last
command entered from above

<ESC> - Escape from command mode

These commands will only take effect if the list of channels exceeds the height of the screen
(i.e there are at least 4 E1s running under the DEMO application).

In the source file (COMMAND.TES) you will see that after some initialisation the program
enters a loop waiting for the colon ":" key to be press to put the terminal into ‘command’
mode. For this the program simply calls the term_kbget() function to receive keys
pressed on the keyboard. If a ":" is hit the program obtains the last row of the terminal
screen from the term_size() function and then enters a second loop accepting input from the
keyboard throught the term_kbedit() function call. The source snippet for this can be
seen below:

Loop forever
while (1)
input str=term kbget();
if (input str streq ":")
Get the screen size..
term size(&scr rows, &scr_cols);
if (scr_cols > 127)
line width=126;
else
line width=scr cols-1;
endif
input str="";

Loop accepting commands
while (1)
term cur pos(scr rows-1,0);
term print(ljust(":"," ",line width));
input str=term kbedit (scr rows-1,1,scr cols-1,input str,0);
Get the character that terminated the input (E.g. ESC or Enter)
c=term kbgetx () ;
term kbget () ;

etc..

p47

© Zentel Telecom Ltd., 2009

The key that caused the term_kbedit() to terminate is retrieved by a call to term_kb_getx()
and if it was the ESC key then we break out of the inner loop to take the terminal out of
command mode.

Otherwise the input_str variable has been returned from the term_kbedit() function it is then
parsed and the command and parameters are extracted to an array called parms[]:

if (c eq ESC)
term cur pos(scr rows-1,0);
term print(ljust(""," ",line width+1l));
break;
else
Strip off any question mark at end
if (substr(input_ str,length (input str),1l) streq "2")
input str=substr(input str,1,length (input str)-1);

endif

Get each parmeter in turn

i=1;

for (p=1;p<=MAX PARMS;p++)
parms [p] —_n H,.

endfor

break next=0;
for (p=1;p <= MAX PARMS;p++)
skip spaces
for(; 1 <= length(input str); i++)
if (substr (input str,i,1) strneq " " and
substr (input str,i,1l) strneqg " 't")
break;
endif
endfor

If rest of input contained only spaces
if (i > length(input str))

break;
endif

extract next parm ...

for(;i <= length(input str);i++)
c=substr (input str,i,1);
if(c streg " " or ¢ streq "'t")

break;

endif
parms [p]=parms[p] & cC;

endfor

if (break next eq 1)
break;

endif

endfor

Once the command and parameters have been parsed from the input string then the program
can excecute the commands. For the DEMO application the only commands are to allow the
screen to be scrolled by sending internal messages to the SCRDEMO.TEX program. The
messages that can be sent are defined in SCREEN.INC and are as follows:

const SCR_NEXT = "03"; # Scroll left, right or both screens (depends on last command)
const SCR_LEFT = "06"; # Select and scroll left screen

const SCR_RIGHT ="07"; # Select and scroll right screen

const SCR_BOTH = "08"; # Scroll both

const SCR_GOTO = "09"; # Goto a certain line

These messages are sent to the SCRDEMO.TEX task using the msg_put() function as shown in
the following code snippet:

p48

© Zentel Telecom Ltd., 2009

If there was no input (only ENTER pressed) then just send the
SCR_NEXT command
if (parms[1] streg "")

input str="";
msg_put ("SCREEN", SCR_NEXT) ;
continue;

endif

We have got a command
=
switch (parms[1])
case "1":
msg_put ("SCREEN", SCR_LEFT) ;
case "r"
msg_put ("SCREEN", SCR_RIGHT) ;
case "b":
msg_put ("SCREEN", SCR_BOTH) ;
case "g":
msg_put ("SCREEN", SCR_GOTO & " " & parms([2]);
default:
input str=input str & "?";
continue;
endswitch
input str="";
endif # esc not pressed
endwhile # End loop accepting commands
endif # End if ":"
endwhile
endmain

p49

© Zentel Telecom Ltd., 2009

Index

| ‘ -
CHANTASK.TES program description 13

COMMAND.TES program description 47
Compiling the applications 8

-D -

DEMO.TES program description 10

-1 -

Introduction 5
IN_IVR_TASK.TES 40

-0 -

out_dial() function description 36
OUT_IVR_TASK program description 30
out_progress() function description 37

out_release() function description 39
out_setup() function description 33

-R -

Running the demo application 9

- S -

SCRDEMO.TES program description 42

T -

The check_inbound() function 26
The check_outbound() function 17

p50

© Zentel Telecom Ltd. 2009
www.telecom-engine.com

	Table of Contents
	Introduction
	Compiling the applications
	Running the demo application
	DEMO.TES
	DEMO.TES program description

	CHANTASK.TES
	CHANTASK.TES program description
	The check_outbound() function
	The check_inbound() function

	OUT_IVR_TASK.TES
	OUT_IVR_TASK program description
	out_setup() function description
	out_dial() function description
	out_progress() function description
	out_release() function description

	IN_IVR_TASK.TES
	IN_IVR_TASK.TES

	SCRDEMO.TES
	SCRDEMO.TES program description

	COMMAND.TES
	COMMAND.TES program description

