
CXPIKA
 Host Media Processing (HMP) Library

for the Telecom Engine

© Zentel Telecom Ltd., 2009

p2

© Zentel Telecom Ltd, 2009

p3

© Zentel Telecom Ltd, 2009

Table of Contents

Introduction 5
A Simple Example 6
Example to Handle Multiple Channels 10
Terminating Events 13
Blocking and Non-blocking Mode 16
Call Control Library Quick Reference 18
Media Processing Library Quick Reference 19
PIKA HMP Call Control Function Reference 20
 PKGroupTrace 20
 PKCallTrace 21
 PKCallWait 22
 PKCallWaitAbort 24
 PKCallLastEvent 25
 PKCallState 26
 PKCallAccept 27
 PKCallAnswer 28
 PKCallReject 29
 PKCallHangup 30
 PKCallRelease 32
 PKCallGetInfo 33
 PKCallGetParm 34
 PKCallSetParm 35
 PKCallClrParm 36
 PKCallMake 37
 PKCallUseSignal 38
 PKCallEarlyMedia 39
 PKCallSendInfo 40
 PKCallMediaBridge 41
PIKA HMP Media Processing Function Reference 42
 PKChanTrace 42
 PKChanState 43
 PKChanLastEvent 44
 PKChanPlay 46
 PKChanPlayh 48
 PKChanRecord 50
 PKChanRecordh 52
 PKChanTermDTMF 54
 PKChanTermTimeout 56
 PKChanTermNonSil 57
 PKChanToneCtl 58
 PKChanWaitDTMF 59
 PKChanClearDTMF 61
 PKChanGetDTMF 62
 PKChanAbort 63
 PKChanBusyState 64
 PKChanBlockMode 65

p4

© Zentel Telecom Ltd, 2009

p5

© Zentel Telecom Ltd, 2009

Introduction
The CXPIKA.DLL library provides the functionality for the PIKA host Media Processing (HMP)
range of products. This includes the PIKA Analog FXO Trunk and Analogue FXS Station
boards; the PIKA digital PCI and PCIe boards; and the on-host VOIP (SIP) functionality.

The CXPIKA.DLL libary is written using the high level PIKA GrandPrix API and many of the
functions will map one-to-one to the GrandPrix library equivalent. However much of
the difficult programming tasks such as multi-threading, event handling and developing under
the asynchronous state-machine model will be allieviated by programming under the Telecom
Engine.

The CXPIKA library contains both the call control functionality required for making and
receiving calls, as well as the media processing functionality for playing speech prompts,
receiving DTMF digits, recording messages etc.

All the call control functions have function names with the prefix: PKCall.. (E.g.
PKCallAnswer(), PKCallAccept() etc), whereas the media processing functions have the
prefix: PKChan... (E.g. PKChanPlay(), PKChanRecord() etc).

For all functions both call control and media processing (PKCallXxx() and media processing
PKChanXxx()), the functions take the group number and channel number as the first two
arguments. Note that channel numbers run from 1 up to the maximum number of
channels in the group, whereas group numbers start from 0.

-o-

p6

© Zentel Telecom Ltd, 2009

A Simple Example
Probably the best way to show the basic library functions and the library calling conventions is to
provide a simple example.

The example below simply waits for an incoming call on the first channel of the first group, then
plays a message and receives some DTMF. The concept of a group is defined by the PIKA
software as a collection of channels possibly associated with an E1 port on Digital boards, or
otherwise a logical collection of channels such as VOIP or Analogue channels. Group numbers
start from 0, whereas channel numbers start from 1.

$include "pika.inc"

int group, chan, x, event;

var filename:64;

var tone:1;

main

 // Variables to hold incoming address information

 var From:127;

 var To:127;

 var Display:127;

 // hard-code these for this example

 group=0

 chan=1;

 filename="hello.vox";

 // Turn on trace for call controlfunctions and events
 PKCallTrace(group,chan,2);

 // Turn on trace for media processing functions and events

 PKChanTrace(group,chan,2);

 // Loop waiting for events

 while(1)

 // Wait until next event received

 x=PKCallWait(group,chan,PK_WAIT_FOREVER,&event);

 if(x > 0)

 applog("group=",group," chan=",chan," received event=",event);

 // Look for Incoming call event

 if(event eq PKX_EVENT_GROUP_INCOMING_CALL)

 // Force jump to onsignal on DISCONNECT

 PKCallUseSignal(group,channel);

 // When we get INCOMING CALL then retreive the call info

 x=PKCallGetInfo(group,chan);

 // Now get the parameters that we want (To, From, Display)

 x=PKCallGetParm(group,chan,PK_PARM_TO,&From);

 x=PKCallGetParm(group,chan,PK_PARM_FROM,&To);

 x=PKCallGetParm(group,chan,PK_PARM_DISPLAY,&Display);

 applog("INFO FROM =",From," To=",To," Display=",Display);

 // Accept the call

 x=PKCallAccept(group,chan);

 // Look for Call Accepted Event...

 else if(event eq PKX_EVENT_CALL_ACCEPTED)

 // Answer the call once we get Call Accepted event

 x=PKCallAnswer(group,chan);

 // When we get call Answered event then we break the loop

p7

© Zentel Telecom Ltd, 2009

 else if(event eq PKX_EVENT_CALL_ANSWERED)

 break;

 endif endif endif

 else if(x eq 0)

 applog("group=",group," chan=",chan," No event recieved");

 endif endif

 // Prevent tight loop (to allow windows events to be processed)

 task_sleep(1);

 endwhile

 // Call answered

 applog("group=",group," chan=",chan," Call Answered...");

 // Simply loop forever playing DEMO.VOX

 // until DISCONNECT causes jump to onsignal..

 while(1)

 // Play a prompt

 x=PKChanPlay(group,chan,filename);

 // Wait for up to 3 DTMF digits..

 x=PKChanWaitDTMF(group,chan,3,40,40);

 // Retrieve the entered DTMF digits

 input=PKChanGetDTMF(group,chan);

 applog("PKChanGetDTMF returned input=",input);

 // Prevent tight loop (to allow windows events to be processed)

 task_sleep(1);

 endwhile

endmain

//**

//******* THIS IS THE ONSIGNAL FUNCTION ********

//**

onsignal

int state;

 applog("group=",group," chan=",chan," IN ONSIGNAL!");

 // Disconnect our end of the call..

 x=PKCallHangup(group,chan,0);

 // Wait for channel to go idle

 while(1)

 x=PKCallState(group,chan,&state);

 applog("group=",group," chan=",chan," state=",state);

 if(state eq PKX_CALL_STATE_IDLE)

 // Release the call resources..

 x=PKCallRelease(group,chan);

 break;

 endif

 // Prevent tight loop (to allow windows events to be processed)

 task_sleep(1);

 endwhile

 // Restart the program to wait for another call..

 restart;

endonsignal

The program should be fairly self explanatory but I will describe the key parts of the program
below.

The “pika.inc” file is provided with the library and defines all the constants that are used with the
library such as PKX_EVENT_GROUP_INCOMING_CALL, PK_EVENT_CALL_ACCEPTED

p8

© Zentel Telecom Ltd, 2009

etc.

In the main routine, after initializing some variables and switching on function and event trace
(with PKChanTrace() and PKCallTrace()) the program then enters a loop waiting for events to be
received from the underlying PIKA software. The PKCallWait
(group,channel,timeout_100ms,&event) function call will wait for the specified timeout (in 10ths
of a second) for an event . If the timeout is defined as -1 (PK_WAIT_FOREVER) then the call
will not return until an event is received or it is aborted by a PKCallWaitAbort() call.

The first event we expect to receive here is the PKX_EVENT_GROUP__INCOMING_CALL to
indicate that an incoming call has been received for this group and channel. Once a
PKX_EVENT_GROUP__INCOMING_CALL event has been received then we retrieve some call
information using the PKCallGetInfo() and PKCallGetParm() functions, then we accept the call
using PKCallAccept() function. After the PKX_EVENT_CALL_ACCEPTED has been received
we answer the call with PKCallAnswer(). Once the PKX_EVENT_CALL_ANSWERED event
has been received then the call is now answered and live and so the program breasks from the loop
to carry out some media functions (such as play and record etc).

It should be noted that after the PKX_EVENT_GROUP_INCOMING_CALL event is detected the
program calls PKCallUseSignal() to force and immediate jump to the onsignal function if a
PKX_EVENT_CALL_DISCONNECT event is received thereafter. This provides a
mechanism to have a single exit point for the program when the Disconnect event can be handled
and the call can be cleared down.

After this the program enters another loop where some calls to the Media processing functions are
made to play a voice prompt and to receive some DTMF digits. This loop will continue
indefinitely until the caller disconnects the phone whereby the program will immediately jump to
the onsignal function to cleardown the call and restart the application ready for another call.

First a voice prompt is played to the caller using the PKChanPlay(group,chan,filename) function
after which the application waits for some DTMF input using the PKChanWaitDTMF
(group,chan,num_dig,first_delay10ths, inter_delay10ths) function.
The PKChanWaitDTMF() function puts the task into a blocking state until one of the terminating
conditions is met. The terminating condition could be that the requested number of digits has
been received (num_dig) or the timeout waiting for the first digit (first_delay10ths) was exceeded,
or the inter-digit timeout was exceeded (inter_delay10ths). PKChanWaitDTMF() will then
copy any digits received into the internal digit buffer for the voice channel. The next call
PKChanGetDTMF(group,chan) returns any digits that have been copied to the internal digit buffer
for the specified channel.

The application then checks if a tone was received and if so will use the received DTMF to make
the name of a prompt file which is then played using the SMplay() function.

Once a PKX_EVENT_CALL_DISCONNECT event occurs and the program is forced into the the
onsignal function, the call is disconnected using the PKCallHangup(group,channel,cause) call and
the application goes into a loop waiting for the channel to return to the PKX_CALL_STATE_IDLE
state before releasing the call with PKCallRelease(group,channel) and restarting the program to
wait for the next call.

Notice that here the program uses the PKCallState() function to wait for the channel to enter the
PKX_CALL_STATE_IDLE state. It would also be valid to wait for the channel to receive the
PKX_EVENT_CHANNEL_READY event by calling the PKChanLastEvent() function ..

p9

© Zentel Telecom Ltd, 2009

-o-

p10

© Zentel Telecom Ltd, 2009

Example to Handle Multiple Channels
The best way to simulataneously handle multiple inbound calls is to have a master program
'spawn' a separate channel control task for each of the inbound channels. The channel
control task will then receive the group and channel number from the master task and then
wait for an inbound call on that channel.

The following code will spawn 20 channel control tasks to simultaneously wait for inbound
calls (this is sufficient for the evaluation version of the PIKA HMP software which provides a
maximum of 20 SIP channels).

master.tes:

main

int group, chan;

 // Assume group=0 for this example

 group=0;

 // Turn on trace for this group

 PKGroupTrace(group,2);

 // spawn 20 channel control tasks to receive inbound calls

 for(chan=1;chan <=20;chan++)

 // spawn the task 'pika_in.tex' which receives

 // the group and channel as arguments..

 task_spawn("pika_in",group,chan);

endfor

endmain

pika_in.tes:

// This defines all the constants for the cxpika.dll library

$include "pika.inc"

// define some global variables..

int group, chan;

main

 var filename:127;

 var From:127;

 var To:127;

 var Display:127;

 // receive the group and channel numbers as passed

 //from the master.tes program

 group=task_arg(1);

 chan=task_arg(2);

 filename="helloworld.vox";

 // Loop waiting for events

 while(1)

 // Wait until next event received

 x=PKCallWait(group,chan,PK_WAIT_FOREVER,&event);

 if(x > 0)

 applog("group=",group," chan=",chan," received event=",event);

 // Look for Incoming call event

 if(event eq PKX_EVENT_GROUP_INCOMING_CALL)

 // Forces the Disconnect signal to cause

 // immediate jump to onsignal function

p11

© Zentel Telecom Ltd, 2009

 PKCallUseSignal(group,channel);

 // When we get INCOMING CALL then retreive the call info

 x=PKCallGetInfo(group,chan);

 // Now get the parameters that we want (To, From, Display)

 x=PKCallGetParm(group,chan,PK_PARM_TO,&From);

 x=PKCallGetParm(group,chan,PK_PARM_FROM,&To);

 x=PKCallGetParm(group,chan,PK_PARM_DISPLAY,&Display);

 // Display these to application log

 applog("INFO FROM =",From," To=",To," Display=",Display);

 // Accept the call

 x=PKCallAccept(group,chan);

 // Look for Call Accepted Event...

 else if(event eq PKX_EVENT_CALL_ACCEPTED)

 // Answer the call once we get Call Accepted event

 x=PKCallAnswer(group,chan);

 // When we get call Answered event then we break the loop

 else if(event eq PKX_EVENT_CALL_ANSWERED)

 break;

 endif endif endif

 else if(x eq 0)

 applog("group=",group," chan=",chan," No event recieved");

 endif endif

 // Prevent tight loop (to allow windows events to be processed)

 sleep(1);

 endwhile

 // Call answered

 applog("group=",group," chan=",chan," Call Answered...");

 // Simply loop forever playing HELLOWORLD.VOX until

 // DISCONNECT causes jump to onsignal..

 while(1)

 // Play a prompt (DEMO.VOX)

 x=PKChanPlay(group,chan,filename);

 // Wait for up to 3 DTMF digits..

 x=PKChanWaitDTMF(group,chan,3,40,40);

 // Retrieve the entered DTMF digits

 input=PKChanGetDTMF(group,chan);

 applog("PKChanGetDTMF returned input=",input);

 // Prevent tight loop (to allow windows events to be processed)

 task_sleep(1);

 endwhile

endmain

//**

//******* THIS IS THE ONSIGNAL FUNCTION ********

//**

onsignal

int state;

 applog("group=",group," chan=",chan," IN ONSIGNAL!");

 // Disconnect our end of the call..

 x=PKCallHangup(group,chan,0);

 // Wait for channel to go idle

 while(1)

 x=PKCallState(group,chan,&state);

 applog("group=",group," chan=",chan," state=",state);

p12

© Zentel Telecom Ltd, 2009

 if(state eq PKX_CALL_STATE_IDLE)

 // Release the call resources..

 x=PKCallRelease(group,chan);

 break;

 endif

 // Prevent tight loop (to allow windows events to be processed)

 task_sleep(1);

 endwhile

 // Restart the program to wait for another call..

 restart;

endonsignal

-o-

p13

© Zentel Telecom Ltd, 2009

Terminating Events
Many of the media processing functions such as PKChanPlay() and PKChanRecord() will cause
the calling task to block until the function completes with a terminating event (unless
PKChanMode() is called to allow non-blocking functionality).

The list of blocking functions for which terminating events apply are listed below:

PKChanPlay(vox_chan,filename[,encoding,sample_rate])
PKChanPlayh(vox_chan,filehandle[bytes,encoding,sample_rate])
PKChanRecord(vox_chan,filename,[timeout_ms,silence_ms,encoding,sample_rate,beep])
PKChanRecordh(vox_chan,filehandle,[timeout_ms,silence_ms,encoding,sample_rate,beep])
PKChanWaitDTMF(vox_chan,max_tones,first_delay10ths,inter_delay10ths[,term_digits])
PKChanPlayTone(vox_chan,toneid,duration_ms)
PKChanPlayDigits(vox_chan,digit_str,[inter_delay_ms,dig_dur_ms])

The underlying PIKA function calls for all of the above functions require that a PKX_TTermCond
structure be passed to the function. This structure is as follows:

typedef struct {

 PK_U32 digitMask;

 PK_INT maxDigits;

 PK_INT timeout;

 PK_INT initialSilenceTimeout;

 PK_INT silenceTimeout;

 PK_INT nonSilenceTimeout;

 PK_INT interDigitTimeout;

} PKX_TTermCond;

Each Channel maintains its own global copy of this structure which is passed to each of the above
blocking media processing functions (plus any others that are specified by the specific function
arguments).

On start-up the only global termination condition to be set is the maxDigits field which is set to 1.
 This means, by default, all of the above asyncronous functions will terminate when a single
DTMF digit is received (however this may be overridden by a function specific argument where
relevant).

Some of the values in this channel specific global structure can be set using the
PKChanTermDTMF(), PKChanTermTimeout() and PKChanTermNonSil() functions. All the
other fields are set depending on the function and the possible termination conditions that are valid
for that function.

For example, for the PKChanWaitDTMF
(vox_chan,max_tones,first_delay10ths,inter_delay10ths[,term_digits]) function, prior to making
the call the global, channel specific PKX_TTERMCond structure is copied to a local structure,
then the maxDigits, initialSilenceTimeout, InterDigitTimeout and digitMask fields are overwritten
by the values specified by the max_tones,first_delay10ths,inter_delay10ths and term_digits
arguments passed to the function.

Below is a description of each of the fields in the PKX_TTermCond structure and the functions
that each is relevant to:

p14

© Zentel Telecom Ltd, 2009

Members Description

digitMask Terminate the media function when one of the digits specified in
the mask is received (All media functions).

maxDigits Terminate the media function when the specified number of digits
have been received (All media functions).

timeout Terminate the media function when the specified amount of time, in
milliseconds, has passed (All media functions).

initialSilenceTimeout Terminate the media function when the specified amount of initial
silence (no digits for CollectDigits or no voice for Record), in
milliseconds, has passed (Record and CollectDigits media
functions).

silenceTimeout Terminate the media function when the specified amount of silence,
in milliseconds, has passed after receiving voice (Record media
function).

nonSilenceTimeout Terminate the media function when the specified amount of
non-silence (digits), in milliseconds, has been received (All media
functions).

interDigitTimeout Terminate the media function when the specified amount of silence,
in milliseconds, after receiving a digit has passed (CollectDigits
media function).

When a blocking media processing function returns the reason for the termination of the function
is passed back as the function return value. Below is shown the list of termination reason
values as defined in the pika.inc header file:

Terminating events

#define TERM_ERROR -1

#define TERM_TONE 1

#define TERM_MAXDTMF 2

#define TERM_TIMEOUT 3

#define TERM_INTERDELAY 4

#define TERM_SILENCE 5

#define TERM_ABORT 6

#define TERM_EODATA 7

#define TERM_PLAYTONE 8

#define TERM_PLAYDIGITS 9

#define TERM_PLAYCPTONE 10

#define TERM_INITSILENCE 11

#define TERM_NONSIL 12

The following table gives a description of each of these terminating events and the function for
which they apply:

Event Name Description Applies to functions
TERM_ERROR An error of some kind was

encountered
ALL

TERM_TONE The function was ALL

p15

© Zentel Telecom Ltd, 2009

terminated by a DTMF
digit listed in the set of
specific DTMF digits

TERM_MAXDTMF The total number of
DTMF digits requested
has been received

ALL

TERM_TIMEOUT A timeout has occurred ALL

TERM_INTERDELA
Y

The specified inter-digit
delay timeout has occurred

PKChanWaitDTMF();

TERM_SILENCE The specified period of
silence has occurred

PKChanRecord();
PKChanRecordh();

TERM_ABORT The function was aborted
by SMabort()

ALL

TERM_EODATA End of file or data has
been reached.

PKChanPlay();
PKChanPlayh();
PKChanRecord();
PKChanRecordh();

TERM_PLAYTONE The specified tone has
finished playing

PKChanPlayTone()

TERM_PLAYDIGITS

All specified digits have
been played

PKChanPlayDTMF()

TERM_INITSILENC
E

Initial silence period
exceeded (Record and
WaitDTMF)

PKChanWaitDTMF();
PKChanRecord();
PKChanRecordh();

TERM_NONSILENCE Period of non-silence
exceeded

ALL

Note: When called in blocking mode (the default mode for a channel), all of the above functions
will also be terminated whenever a hangup signal is received that causes a jump to the onsignal
function. However there is no specific terminating event code for this type of termination
since the return value from the function can never be retrieved when a hangup signal is received,
since the program execution will immediately jump to the onsignal routine.

When in non-blocking mode (as specified by the PKChanBlockMode() function), the above
functions will not automatically be terminated by a jump to the onsignal function. When in
non-blocking mode the asyncronous media operation will continue uninterrupted and must be
manually aborted using the PKChanabort() function (or the application must manually wait for the
function to complete by looping on the PKChanBusyState() function call to wait for the state to
return to 0 to indicate that the asynchronous media function has completed..

-o-

p16

© Zentel Telecom Ltd, 2009

Blocking and Non-blocking Mode
All of the above asyncronous media functions can be called in both blocking or non-blocking
mode as specified by a call to PKChanBlockMode(group,chan,block_mode).

Under normal circumstances any call to the above blocking functions will not return until the
media function has completed or been terminated by a terminating event. For example a call to
PKChanPlay() will not return until the play has completed or has been interupted by a terminating
condition such as a DTMF digit being received.

However sometime it is useful to allow the function to return immediately whilst the media
processing task is completed in the background so that the program can carry on with some other
task. For example, for a database look-up that might take a significant period of time it is
useful to be able to start playing the music but for the PKChanPlay() function to return
immediately so that the database look-up can be carried out whilst the music is still playing.
Once the database lookup has completed then the program can abort the play and continue.

 In order to allow this the voice channel can be put into non-blocking mode using the
PKChanBlockMode() function. If the block_mode argument is set to a non zero value then any
calls to the above asyncronous media functions will return immediately whilst the play, record,
play tone etc proceeds in the background.

In this case it is up to the application to ensure that the current asyncronous media functions has
finished before attempting to call one of the other blocking speech functions. To do this there is
a function PKChanBusystate(group,chan) which returns the current function that running on the
channel at the present time or 0 if there are no speech functions currently running.

NOTE: if block_mode is set to 1 then the PKChanBlockMode() call will only apply to the next
blocking speech function call. Once that function has completed then the channel mode will be
set back to blocking mode. If a non-zero value other than 1 is given then the channel will stay
in non-blocking mode until a call to PKChanBlockMode() is made again with block_mode set to 0
to put the channel back into non-blocking mode.

There are three constants defined in ACULAB.INC for this purpose as shown below:

const PK_MODE_BLOCKING =0;

const PK_MODE_NONBLOCKING_ONCEONLY =1;

const PK_MODE_NONBLOCKNG =2;

For example, the following code extract will play some music in the background whilst a database
look-up occurs. Once the database lookup has completed the application will abort the music
and wait for the channel to return to idle.

// Prevent DTMF tones from interrupting playback

PKChanTermDTMF(group,chan,0);

// Play "Please wait while we look up the information"

PKChanPlay(group,chan,"PLSWAIT.VOX");

// Change the mode to play in the background (non-blocking) for the next speech function only

(non-blocking_flag=1)

PKChanBlockMode(group,chan,PK_MODE_NONBLOCKING_ONCEONLY);

// Play music in the background while information is retrieved

p17

© Zentel Telecom Ltd, 2009

PKChanPlay(group,chan,"MUSIC.VOX");

// Do the data retrieval whilst music is playing

data_retrieval_func();

// Abort the music

PKChanAbort(group,chan);

// Loop waiting for chan state to return to 0 (should only take milliseconds..)

while(PKChanBusyState(group,chan))

task_sleep(1);

endwhile

 // Allow DTMF tones to interrupt SMplay() etc again..

PKChanTermDTMF(group,chan,1);

 ...

 etc

 // Remember that is a jump to onsignal occurs in non-blocking mode then the play will continue

 // in the background and it is up to the programmer to abort and/or wait for the play to finish

onsignal

// Check if hangup received during music playback (or other non-blocking operation

if(PKChanBusyState(group,chan))

PKChanAbort(group,chan);

// Loop waiting for chan state to return to 0 (should only take milliseconds..)

 while(PKChanBusyState(group,chan))

 task_sleep(1);

 endwhile

endif

..

endonsignal

-o-

p18

© Zentel Telecom Ltd, 2009

Call Control Library Quick Reference
PKGroupTrace(group, tracelevel);
PKCallTrace(group, channel, tracelevel);
PKCallWait(group,channel,timeout_100ms,&pState);
PKCallWaitAbort(group,channel);
PKCallLastEvent(group, channel, &pEvent);
PKCallState(group, channel, &pState);
PKCallAccept(group, channel);
PKCallAnswer(group, channel);
PKCallReject(group, channel);
PKCallHangup(group, channel,cause);
PKCallRelease(group, channel);
PKCallGetInfo(group, channel);
PKCallGetParm(group, channel,parm_id,&pValue);
PKCallSetParm(group, channel,parm_id,Value);
PKCallClrParm(group, channel);
PKCallMake(group, channel);
PKCallUseSignal(group, channel[,flag]);
PKCallEarlyMedia(group, channel);
PKCallSendInfo(group, channel,info_str1[,info_str2,[...]]);
PKCallMediaBridge(group1, channel1,group2,channel2[,recapture]);

-o-

p19

© Zentel Telecom Ltd, 2009

Media Processing Library Quick Reference
PKChanTrace(group, channel, tracelevel)
PKChanState(group, channel, &pState)
PKChanLastEvent(group, channel, &pEvent)
term_code=PKChanPlay(group,channel,filename[,encoding,sample_rate])
term_code=PKChanPlayh(group,chan,filehandle[bytes,encoding,sample_rate])
term_code=PKChanRecord
(group,chan,filename,max_time_ms,max_silence_ms,[encoding[,sample_rate[,beep]]])
term_code=PKChanRecordh
(group,chan,file_handle,max_time_ms,max_silence_ms,[encoding[,sample_rate[,beep]]])
PKChanTermDTMF(group, channel,max_digits[,digit_mask])
PKChanTermTimeout(group, channel,timeout_ms)
PKChanTermNonSil(group, channel,timeout_ms)
PKChanToneCtl(group, channel,DTMF_Detect, Tone_detect)
term_code=PKChanWaitDTMF
(group,channel,max_tones,first_delay10ths,inter_delay10ths[,term_digits])
PKChanClearDTMF(group, channel)
digits=PKChanGetDTMF(group, channel[,max_digits)
PKChanAbort(group, channel)
functionID=PKChanBusyState(group, channel);
PKChanBlockMode(group, channel,block_mode);

-o-

p20

© Zentel Telecom Ltd, 2009

PIKA HMP Call Control Function Reference

PKGroupTrace
Synopsis:

PKGroupTrace(group, tracelevel)

Arguments:
group – The logical group number.

 tracelevel – 0 turns trace off, 1-Trace function calls, 2-Also trace events

Description: This function switches on or off the tracing of all function and events for a
particular group. If tracelevel is set to 1 then only function calls are traced, whereas if the
tracelevel is set to 2 then both function calls and events are traced.

If group trace is switched on the both Call and Channel functions (and events) will be traced for
this group.

Trace will be written to the Telecom Engine trace log.

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p21

© Zentel Telecom Ltd, 2009

PKCallTrace
Synopsis:

PKCallTrace(group, channel, tracelevel)

Arguments:
group – The logical group number.
channel – The channel number.
tracelevel – 0 turns trace off, 1-Trace function calls, 2-Also trace events

Description: This function switches on or off the tracing of all call control functions and events
(PXK_EVENT_CALL_xxx). If tracelevel is set to 1 then only function calls are traced,
whereas if the tracelevel is set to 2 then both function calls and Events are traced. Trace will be
written to the Telecom Engine trace log.

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p22

© Zentel Telecom Ltd, 2009

PKCallWait
Synopsis:

PKCallWait(group,channel,timeout_100ms,&pState)
Arguments:

group – The logical group number.
channel – The channel number.
pState – Pointer to a variable to receive the ID of the event that terminated the PKCallWait()

call.

Description: This function will wait for an event to be received on a particular group and
channel. It will return either when an event is detected on the channel or the timeout has expired
(or if it is aborted by PKCallWaitAbort()). The timeout is specified in 100ms units (tenths of a
second) after which the function will return if no event has been received. If -1
(PK_WAIT_FOREVER) is specified for the timeout then the call will wait forever for an event.

The function takes a pointer to a variable which will hold the ID of the event received.

Note that the function keeps an internal track of events on a channel and if the state of a channel
has changed since the last time it was called then it will return immediately with the current state
of the channel. This is to prevent events from being missed in between calls to PKCallWait()
but it means that the programmer should always check the returned state in a loop to ensure that
the expected event is received. For example:

 // loop waiting for incoming call

 while(1)

 x=PKCallWait(group,chan,PK_WAIT_FOREVER,&event);

 // Make sure the event we want is received..

 if(x > 0)

 if(event eq PK_EVENT_GROUP_INCOMING_CALL)

 // Accept the call

 PKCallAccept(group,chan);

 else if(event eq PK_EVENT_CALL_ACCEPTED)

 // Answer the call

 PKCallAnswer(group,chan);

 else if(event eq PK_EVENT_CALL_ANSWERED)

 break;

 endif endif endif

 endif

 task_sleep(1);

 endwhile

 // Play a vox file to caller

 PKChanPlay(group,chan,filename);

 // Hangup the call

 PKCallHangup(group,chan,PK_CAUSE_NORMAL);

 etc..

Returns: The function will return 0 if the timeout has expired without receiving an event (or if the
function was aborted by a PKCallWaitAbort() call). It will return 1 if the function terminated
because an event was detected (and the event ID will be set in the variable pointed to by pState).
It will return -1 is a bad group or channel was given.

-o-

p23

© Zentel Telecom Ltd, 2009

p24

© Zentel Telecom Ltd, 2009

PKCallWaitAbort
Synopsis:

PKChanWaitAbort(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function will abort any currently active call to PKCallWait() that is blocking
and waiting for an event to arrive. This function would typically be called from another task to
stop a PKCallWait() in order that some other event could be handled (such as graceful shutdown of
the system).

The PKCallWait() function will return with a return value of 0 to indicate that no event was
actually received.

Returns: 0 upon success or a negative error code.

-o-

p25

© Zentel Telecom Ltd, 2009

PKCallLastEvent
Synopsis:

PKCallLastEvent(group, channel, &pEvent)

Arguments:
group – The logical group number.
channel – The channel number.
pEvent – Pointer to the variable that will receive the last event

Description: This function sets the variable pointed to by the pEvent argument to the value of the
last event recieved by the active call on on the specified group and channel. The event values
returned can be one of the following as defined in the pika.inc include file:

const PKX_EVENT_GROUP_INCOMING_CALL =0x6100;

const PKX_EVENT_GROUP_INCOMING_TRANSFER =0x6101;

const PKX_EVENT_CALL_ACCEPTED =0x6180;

const PKX_EVENT_CALL_ANSWERED =0x6181;

const PKX_EVENT_CALL_DIALING =0x6182;

const PKX_EVENT_CALL_PROCEEDING =0x6183;

const PKX_EVENT_CALL_ALERTING =0x6184;

const PKX_EVENT_CALL_CONNECTED =0x6185;

const PKX_EVENT_CALL_DROPPED =0x6186;

const PKX_EVENT_CALL_DISCONNECTED =0x6187;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_MODEM_FAX =0x6188;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_ANSWERING_MACHINE =0x6189;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_LIVE_PERSON =0x618A;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_SIT_MESSAGE =0x618B;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_SILENCE =0x618C;

const PKX_EVENT_CALL_ANALYSIS_DETECTED_UNKNOWN =0x618D;

 const PKX_EVENT_CALL_ANALYSIS_DETECTED_ANSWERING_MACHINE_END =0x618E;

const PKX_EVENT_CALL_HELD =0x6190;

const PKX_EVENT_CALL_RESUMED =0x6191;

const PKX_EVENT_CALL_EARLY_MEDIA =0x6192;

const PKX_EVENT_CALL_TRANSFER_COMPLETED =0x6193;

const PKX_EVENT_CALL_TRANSFER_FAILED =0x6194;

const PKX_EVENT_CALL_INFO_UPDATED =0x6195;

const PKX_EVENT_CALL_TASK_FAILED =0x61ff;

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p26

© Zentel Telecom Ltd, 2009

PKCallState
Synopsis:

PKCallState(group, channel, &pState)

Arguments:
group – The logical group number.
channel – The channel number.
pState – Pointer to a variable that will hold the returned state

Description: This function sets the variable pointed to by the pState argument to the current state
of the channel as returned from the PIKA PKX_CALL_GetState() function on the specified group
and channel. The state values returned can be one of the following as defined in the pika.inc
include file:

const PKX_CALL_STATE_IDLE=0; // Call is idle or non-existent.

const PKX_CALL_STATE_INITIATED=1; // Outgoing call was started but dialing has not commenced

yet.

const PKX_CALL_STATE_DIALING=2; // Outgoing call is dialing address information.

const PKX_CALL_STATE_PROCEEDING=3; // Outgoing call has transmitted all necessary address

information.

const PKX_CALL_STATE_ALERTING=4; // Incoming or outgoing call is alerting (ringing).

const PKX_CALL_STATE_DETECTED=5; // Incoming call detected and address information is being

retrieved (internal state only).

const PKX_CALL_STATE_OFFERED=6; // Incoming call is being offered to the user application.

const PKX_CALL_STATE_CONNECTED=7; // Incoming or outgoing call is connected.

const PKX_CALL_STATE_DISCONNECTED=8; // Incoming or outgoing call is disconnected.

const PKX_CALL_STATE_TRANSFER_OFFERED=9; // Incoming transfer is being offered to the user

application.

const PKX_CALL_STATE_BLOCKING_COLLECT_CALL=10; // Attempting to block an incoming collect

call

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p27

© Zentel Telecom Ltd, 2009

PKCallAccept
Synopsis:

PKCallAccept(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function accepts the incoming call on the specified group and channel after a
PKX_EVENT_GROUP_INCOMING_CALL event has been received. This function will result
in a PKX_ EVENT_CALL_ACCEPTED event being generated.

This function maps to the following PIKA function:

PCK_CALL_Accept(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p28

© Zentel Telecom Ltd, 2009

PKCallAnswer
Synopsis:

PKCallAnswer(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function answers the incoming call on the specified group and channel after a
PKX_EVENT_GROUP_INCOMING_CALL or PKX_EVENT_CALL_ACCEPTED event has
been received. This function will result in a PKX_ EVENT_CALL_ANSWERED event being
generated.

This function maps to the following PIKA function:

PCK_CALL_Answer(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p29

© Zentel Telecom Ltd, 2009

PKCallReject
Synopsis:

PKCallRejct(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function rejects the incoming call on the specified group and channel after a
PKX_EVENT_GROUP_INCOMING_CALL event has been received. Example reasons for
rejecting a call are:

 Called party number is unknown to the application,

 Application is not ready to handle any more incoming calls, and

 Calling party is on the application's blocked list.

Do not call PKCallAccept() or PKCallAnswer() prior to calling this function. Use the
PKCallHangup() function to terminate the call after those functions are called.

Notes:

 Applications must respond to the PKX_EVENT_GROUP_INCOMING_CALL event with
one of three functions as soon as possible: PKCallAccept(), PKCallAnswer(), or
PKCallReject(). No other function calls are allowed. Failure to respond to the event in a
timely fashion (time depends on the protocol, but is typically just a few seconds), results in
the incoming call being dropped by the remote side.

 Do not call the PKCallRelease() function after rejecting a call. The PKCallReject()
function automatically releases the call resources.

This function maps to the following PIKA function:

PCK_CALL_Reject(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p30

© Zentel Telecom Ltd, 2009

PKCallHangup
Synopsis:

PKCallHangup(group, channel,cause)

Arguments:
group – The logical group number.
channel – The channel number.
cause - The handug cause code

Description: This function performs a local side call hangup on the specified group and channel.
 The cause argument can be set to one of the following values as defined in he pika.inc header
file:

const PKX_CALL_DROP_CAUSE_NORMAL=0;

const PKX_CALL_DROP_CAUSE_BUSY=1;

const PKX_CALL_DROP_CAUSE_FASTBUSY=2;

const PKX_CALL_DROP_CAUSE_REORDER=3;

const PKX_CALL_DROP_CAUSE_NOANSWER=4;

const PKX_CALL_DROP_CAUSE_NODIALTONE=5;

const PKX_CALL_DROP_CAUSE_RESET=6;

const PKX_CALL_DROP_CAUSE_TRANSFER=7;

const PKX_CALL_DROP_CAUSE_REJECTED=8;

const PKX_CALL_DROP_CAUSE_FAILED=9;

const PKX_CALL_DROP_CAUSE_NOT_FOUND=10;

const PKX_CALL_DROP_CAUSE_UNAUTHORIZED=11;

const PKX_CALL_DROP_CAUSE_ADDRESS_CHANGED=12;

const PKX_CALL_DROP_CAUSE_ADDRESS_INCOMPLETE=13;

const PKX_CALL_DROP_CAUSE_CONGESTION=14;

const PKX_CALL_DROP_CAUSE_BAD_REQUEST=15;

const PKX_CALL_DROP_CAUSE_NETWORK_TIMEOUT=16;

const PKX_CALL_DROP_CAUSE_NOT_IMPLEMENTED=17;

const PKX_CALL_DROP_CAUSE_NOT_ACCEPTABLE=18;

const PKX_CALL_DROP_CAUSE_RESOURCE_UNAVAILABLE=19;

const PKX_CALL_DROP_CAUSE_SERVICE_UNAVAILABLE=20;

const PKX_CALL_DROP_CAUSE_NETWORK_OUT_OF_ORDER=21;

const PKX_CALL_DROP_CAUSE_SESSION_TIMER_EXPIRY=22;

const PKX_CALL_DROP_CAUSE_UNKNOWN=23;

This function operates asynchronously. The PKX_EVENT_CALL_DROPPED event is raised if
the function completes successfully. The PKX_EVENT_CALL_TASK_FAILED event is raised if
the function fails for some reason.

The PKCallRelease() function must be called after the PKX_EVENT_CALL_DROPPED event is
received to clean up the call resources.

This function maps to the following PIKA function:

PCK_CALL_Drop(TPikaHandle callHandle,PK_TCallDropCause cause);

Returns: This function returns 0 upon success or a negative error code.

-o-

p31

© Zentel Telecom Ltd, 2009

p32

© Zentel Telecom Ltd, 2009

PKCallRelease
Synopsis:

PKCallRelease(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function releases the call on the specified group and channel and frees up the
call handle.
This function operates synchronously. It must be the last function executed on a call. The
PKX_EVENT_CALL_DISCONNECTED or PKX_EVENT_CALL_DROPPED event must be
received prior to calling this function (i.e the call state should be PK_CALL_STATE_IDLE as
returned by the PKCallState() function).

Note: Do not use this function on an incoming call handle that has been rejected with the
PKCallReject() function. The PKCallReject() function releases the call resources automatically.

This function maps to the following PIKA function:

PCK_CALL_Release(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p33

© Zentel Telecom Ltd, 2009

PKCallGetInfo
Synopsis:

PKCallGetInfo(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function is used to retreive the addressing information for the call on the
specified group and channel usually after a PKX_GROUP_EVENT_INCOMING_CALL event
has been received (It can be used on outgoing calls but its use here is somewhat redundant). A
copy of the PKX_TCallInfo structure is stored in the internal channel array and the the individual
addressing parameters can then be retreived using the PKCallGetParm() function.

This function maps to the following PIKA function:

PCK_CALL_GetInfo(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p34

© Zentel Telecom Ltd, 2009

PKCallGetParm
Synopsis:

PKCallGetParm(group, channel,parm_id,&pValue)

Arguments:
group – The logical group number.
channel – The channel number.
parm_id - The ID of the addressing parameter to retrieve
pValue - Pointer to the variable that will hold the returned addressing value..

Description: This function retrieves the specific addressing parameter value of the parameter
specified by parm_id for the channel specified by group and channel. This function should be
called after the addressing information structure has been retrieved by a call to the PKCallGetInfo
() function. The value of the parameter will be returned in the variable pointed to by the
pValue argument.

The parm_id argument should be set to one of the following values as defined in the pika.inc
header file:

const PK_PARM_TYPE_TO =0;

const PK_PARM_TYPE_FROM =1;

const PK_PARM_TYPE_FORWARDEDFROM =2;

const PK_PARM_TYPE_DISPLAY =3;

const PK_PARM_TYPE_CUSTOM =4;

const PK_PARM_TYPE_CATEGORY =5;

const PK_PARM_TYPE_TOLLCATEGORY =6;

const PK_PARM_TYPE_NUMRESTRICTED =7;

Returns: This function returns 0 upon success or a negative error code.

-o-

p35

© Zentel Telecom Ltd, 2009

PKCallSetParm
Synopsis:

PKCallSetParm(group, channel,parm_id,Value)

Arguments:
group – The logical group number.
channel – The channel number.
parm_id - The ID of the addressing parameter to retrieve
Value - The value to set the parameter to .

Description: This function allows the addressing and other channel parameters to be set prior to
making an outbound call on the specified group and channel. The parm_id field specifies which
parameter is to be set and the Value argument is the value to set that parameter to.

The parm_id argument should be set to one of the following values as defined in the pika.inc
header file:

const PK_PARM_TYPE_TO =0;

const PK_PARM_TYPE_FROM =1;

const PK_PARM_TYPE_FORWARDEDFROM =2;

const PK_PARM_TYPE_DISPLAY =3;

const PK_PARM_TYPE_CUSTOM =4;

const PK_PARM_TYPE_CATEGORY =5;

const PK_PARM_TYPE_TOLLCATEGORY =6;

const PK_PARM_TYPE_NUMRESTRICTED =7;

const PK_PARM_TYPE_TIMEOUT =16;

const PK_PARM_TYPE_CA_ENABLE =17;

const PK_PARM_TYPE_CA_TYPE =18;

const PK_PARM_TYPE_CA_DEBOUNCEON =19;

const PK_PARM_TYPE_CA_DEBOUNCEOFF =20;

const PK_PARM_TYPE_CA_LIVEWORDS =21;

const PK_PARM_TYPE_CA_MAXDURATION =22;

const PK_PARM_TYPE_CA_SPEECHENDTIME 23;

const PK_PARM_TYPE_CA_LIVEMAXTIME =24;

const PK_PARM_TYPE_CA_LIVETOTTIME =25;

const PK_PARM_TYPE_CA_ANSWMACHINEENDTIME=26;

The first group of parameters (from 0 to 7) relate to the fields of the PKX_TCallInfo structure
passed in the PIKA PKX_CALL_Make() function, whereas the second group of parameters (from
16 onwards) relate to the fields of the
PKX_TCallSettings structure passed in the PIKA PKX_CALL_Make() function..

Before making a call, at the very least it is necessary to set the PK_PARM_TYPE_TO field to the
destination address.

Returns: This function returns 0 upon success or a negative error code.

-o-

p36

© Zentel Telecom Ltd, 2009

PKCallClrParm
Synopsis:

PKCallClrParm(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function clears the internal PKX_TCallInfo and PKX_TCallSettings
structures related to the given group and channel. This function can be called prior to calling
the PKCallSetParm() function to clear any values previous set by calls to this function.

Returns: This function returns 0 upon success or a negative error code.

-o-

p37

© Zentel Telecom Ltd, 2009

PKCallMake
Synopsis:

PKCallMake(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function initiates an outbound call on the group and channel. Before making
this call the addressing information for the call should be set up using the PKCallSetParm()
function with, at the very least, the PK_PARM_TYPE_TO parameter being set to define the
destination address..

 // Set up the outbound call parameters..

 PKCallClrParm(group,channel);

 PKCallSetParm(group,channel,PK_PARM_TYPE_TO,"123@192.168.2.6");

 PKCallSetParm(group,channel,PK_PARM_TYPE_FROM,"192.168.2.3");

 PKCallSetParm(group,channel,PK_PARM_TYPE_DISPLAY,"Joe Bloggs");

 // Initiate the outbound call

 x=PKCallMake(group,channel);

This function operates asynchronously. The PKX_EVENT_CALL_CONNECTED or
PKX_EVENT_CALL_DISCONNECTED event is raised if the function completes successfully.
The PKX_EVENT_CALL_TASK_FAILED event is raised if the function fails for some reason.
This function maps to the following PIKA function:

PCK_CALL_Make(TPikaHandle callHandle,PKX_TCallInfo * info,PKX_TCallSettings * setting);

Returns: This function returns 0 upon success or a negative error code.

-o-

p38

© Zentel Telecom Ltd, 2009

PKCallUseSignal
Synopsis:

PKCallUseSignal(group, channel[,flag])

Arguments:
group – The logical group number.
channel – The channel number.
[flag] – Set to 1 (default) to cause task to jump to onsignal if a

PKX_EVENT_CALL_DISCONNECTED event is received. Set to 0 to stop task jumping to
onsignal.

Description: This function allows the current Telecom Engine task to be associated with a
group and channel in such a way that if a call on the specified port and channel receives a
PKX_EVENT_CALL_DISCONNECTED event then the task will be forced to jump immediately
to its onsignal function. The default value of flag if it is not specified is 1. To clear the
association between the task and a port and channel so that it will no longer jump to the onsignal
function upon receiving a PKX_EVENT_CALL_DISCONNECTED event then the flag should be
set to 0.

If this call is made when the last event received on the group and channel was the
PKX_EVENT_CALL_DISCONNECTED (i.e the Disconnect signal had already arrived) then this
will cause the program to immediately jump to its onsignal function.

This function cannot be called unless there is a valid call handle on the specified group and
channel (i.e. after a PKX_EVENT_GROUP_INCOMING_CALL has been received or an
outbound call initiated with a PKCallMake() function call).

Returns: This function returns 0 upon success or a negative error code. code.

-o-

p39

© Zentel Telecom Ltd, 2009

PKCallEarlyMedia
Synopsis:

PKCallEarlyMedia(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function informs the remote party on the call specified by group and channel
that audio information is present on the channel.

This function maps to the following PIKA function:

PCK_CALL_EalryMedia(TPikaHandle callHandle);

Returns: This function returns 0 upon success or a negative error code.

-o-

p40

© Zentel Telecom Ltd, 2009

PKCallSendInfo
Synopsis:

PKCallSendInfo(group, channel,info_str1[,info_str2,[...]])

Arguments:
group - The logical group number.
channel - The channel number.
info_str1 - The information string
[info_str2[, info_str3...]] - Optional additional information strings that will be

concatenated to info_str1

Description: This function informs the remote party on the call specified by group and channel,
of additional protocol specific information as specified by the information strings info_str1,
info_str2 etc. Only SIP channels are currently supported.

For SIP channel, issuing this function results in an INFO message being sent to the remote call
party. The info buffer parameter is broken up into "name=value" fields separated by a vertical bar
"|" character. Values with a vertical bar in them must be enclosed in double quotes. The following
field names are supported:

Field Name Description

headers Additional message headers

type Type of payload being included

payload Payload contents

Note that at if multiple information strings are specified then these strings are concatenated
together to make a single information string that will be sent to the remote party. Since these
strings are concatenated without modification care should be taken to leave spaces between the end
of one string and the start of the next if necessary.

This function maps to the following PIKA function:

PCK_CALL_Info(TPikaHandle callHandle,PKCHAR * Info);

Returns: This function returns 0 upon success or a negative error code.

-o-

p41

© Zentel Telecom Ltd, 2009

PKCallMediaBridge
Synopsis:

PKCallMediaBridge(group1, channel1,group2,channel2[,recapture])

Arguments:
group1 – The first logical group number.
channel1 – The first channel number.
group2 – The second logical group number.
channel2 – The second channel number.
[recapture] - Option recapture flag (default=0)

Description: This function will join the media paths between two calls specified by group1,
channel2 and group2,channel2, freeing up the local channel resources. The call signaling will
still be controlled by the application.

The recapture flag defines whether the media should be pushed out to the network (0) or returned
back to the application (1).

This function maps to the following PIKA function:

PCK_CALL_MediaBridge(TPikaHandle callHandle,TPikaHandle OthercallHandle, PK_BOOL
recapture);

This function will not interfere with the signaling path of either call. Only the media path is
changed.

Media bridging is only valid for calls that use SIP channels.

The media connection between the two calls will be broken when pushing the media to the
network. This connection will NOT be re-established when recapturing the media to the
application. The application will be responsible for calling PKX_CHANNEL_FullDuplexConnect
if desired.

Returns: This function returns 0 upon success or a negative error code.

-o-

p42

© Zentel Telecom Ltd, 2009

PIKA HMP Media Processing Function Reference

PKChanTrace
Synopsis:

PKChanTrace(group, channel, tracelevel)

Arguments:
group – The logical group number.
channel – The channel number.
tracelevel – 0 turns trace off, 1-Trace function calls, 2-Also trace events

Description: This function switches on or off the tracing of all channel (Media) function and
events (PXK_EVENT_CHANNEL_xxx).. If tracelevel is set to 1 then only function calls are
traced, whereas if the tracelevel is set to 2 then both function calls and events are traced. Trace
will be written to the Telecom Engine trace log.

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p43

© Zentel Telecom Ltd, 2009

PKChanState
Synopsis:

PKChanState(group, channel, &pState)

Arguments:
group – The logical group number.
channel – The channel number.
pState – Pointer to a variable that will hold the returned state

Description: This function sets the variable pointed to by the pState argument to the current state
of the channel as returned from the PIKA PKX_CHANNEL_GetState() function on the specified
group and channel. The state values returned can be one of the following as defined in the
pika.inc include file:

const PKX_CHANNEL_STATE_DOWN=0;

const PKX_CHANNEL_STATE_READY=1;

const PKX_CHANNEL_STATE_IN_USE=2;

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p44

© Zentel Telecom Ltd, 2009

PKChanLastEvent
Synopsis:

PKChanLastEvent(group, channel, &pEvent)

Arguments:
group – The logical group number.
channel – The channel number.
pEvent – Pointer to the variable that will receive the last event

Description: This function sets the variable pointed to by the pEvent argument to the value of the
last channel event recieved on the specified group and channel. The event values returned can
be one of the following as defined in the pika.inc include file:

const PKX_EVENT_CHANNEL_DOWN =0x6020;

const PKX_EVENT_CHANNEL_READY =0x6021;

const PKX_EVENT_CHANNEL_IN_USE =0x6022;

const PKX_EVENT_CHANNEL_PHONE_OFFHOOK =0x6023;

const PKX_EVENT_CHANNEL_PHONE_ONHOOK =0x6024;

const PKX_EVENT_CHANNEL_PHONE_HOOKFLASH =0x6025;

const PKX_EVENT_CHANNEL_HOOKFLASH =0x6025;

const PKX_EVENT_CHANNEL_DONE_RINGING =0x6026;

const PKX_EVENT_CHANNEL_DTMF_START =0x6040;

const PKX_EVENT_CHANNEL_DTMF =0x6040;

const PKX_EVENT_CHANNEL_DTMF_END =0x6043;

const PKX_EVENT_CHANNEL_TONE_ON =0x6041;

const PKX_EVENT_CHANNEL_TONE_OFF =0x6042;

const PKX_EVENT_CHANNEL_DONE_TONE_GENERATION =0x6045;

const PKX_EVENT_CHANNEL_DONE_PLAY =0x6046;

const PKX_EVENT_CHANNEL_STOPPED_TONE_GENERATION =0x6047;

const PKX_EVENT_CHANNEL_STOPPED_PLAY =0x6048;

const PKX_EVENT_CHANNEL_STOPPED_RECORD =0x6049;

const PKX_EVENT_CHANNEL_STOPPED_COLLECT_DIGITS =0x604a;

const PKX_EVENT_CHANNEL_DIGIT_BUFFER_FULL =0x604b;

const PKX_EVENT_CHANNEL_TERM_DIGIT_MASK =0x6050;

const PKX_EVENT_CHANNEL_TERM_MAX_DIGITS =0x6051;

const PKX_EVENT_CHANNEL_TERM_TIMEOUT =0x6052;

const PKX_EVENT_CHANNEL_TERM_SILENCE_TIMEOUT =0x6053;

const PKX_EVENT_CHANNEL_TERM_INTERDIGIT_TIMEOUT =0x6054;

const PKX_EVENT_CHANNEL_TERM_NONSILENCE_TIMEOUT =0x6055;

const PKX_EVENT_CHANNEL_TERM_INITSILENCE_TIMEOUT=0x6056;

const PKX_EVENT_CHANNEL_DATAREADY_PLAY =0x6060;

const PKX_EVENT_CHANNEL_UNDERFLOW_PLAY =0x6061;

const PKX_EVENT_CHANNEL_DATAREADY_RECORD =0x6062;

const PKX_EVENT_CHANNEL_OVERFLOW_RECORD =0x6063;

const PKX_EVENT_CHANNEL_FULL_DUPLEX_CONNECT =0x6064;

const PKX_EVENT_CHANNEL_HALF_DUPLEX_CONNECT =0x6065;

const PKX_EVENT_CHANNEL_FULL_DUPLEX_DISCONNECT =0x6066;

const PKX_EVENT_CHANNEL_HALF_DUPLEX_DISCONNECT =0x6067;

const PKX_EVENT_CHANNEL_SPEECH_ON =0x6068;

const PKX_EVENT_CHANNEL_SPEECH_OFF =0x6069;

const PKX_EVENT_CHANNEL_SPEECH_TONE_ON =0x606A;

const PKX_EVENT_CHANNEL_SPEECH_TONE_OFF =0x606B;

const PKX_EVENT_CHANNEL_CONTROL_PLAY =0x606C;

const PKX_EVENT_CHANNEL_DONE_FAX =0x6070;

const PKX_EVENT_CHANNEL_FAX_STARTED =0x6071;

const PKX_EVENT_CHANNEL_FAX_TRAINING_SUCCESS =0x6072;

const PKX_EVENT_CHANNEL_FAX_DOCUMENT_BEGIN =0x6073;

const PKX_EVENT_CHANNEL_FAX_DOCUMENT_END =0x6074;

const PKX_EVENT_CHANNEL_FAX_PAGE_BEGIN =0x6075;

p45

© Zentel Telecom Ltd, 2009

const PKX_EVENT_CHANNEL_FAX_PAGE_END =0x6076;

const PKX_EVENT_CHANNEL_FAX_PAGE_SUCCESS =0x6077;

const PKX_EVENT_CHANNEL_FAX_DISCONNECTING =0x6078;

const PKX_EVENT_CHANNEL_FAX_DISCONNECTED =0x6079;

const PKX_EVENT_CHANNEL_FAX_TRAINING =0x607A;

const PKX_EVENT_CHANNEL_FAX_TRAINING_FAILED =0x607B;

const PKX_EVENT_CHANNEL_FAX_CONTROL_FRAME =0x607D;

const PKX_EVENT_CHANNEL_STOPPED_FAX =0x607E;

const PKX_EVENT_CHANNEL_TASK_FAILED =0x60ff;

Returns: 0 upon success or -1 if a bad group or channel was provided.

-o-

p46

© Zentel Telecom Ltd, 2009

PKChanPlay
Synopsis:

 term_code=PKChanPlay(group,channel,filename[,encoding,sample_rate])
Arguments:

group – The logical group number.
channel – The channel number.
filename – The filename of the voice prompt to play
[encoding] – The audio encoding type of voice prompt file to play
[sample_rate] – The sample rate of the voice prompt file.

Description: This function plays the speech file specified by filename on the given group and
channel.

 If the encoding and sample_rate are not specified then the last encoding and sample_rate used on
the channel are assumed. At start-up the default encoding and sample_rate is set to and the
sample rate is 6000.

Otherwise the encoding and samperate can be specifed from one of the types defined in the
pika.inc header file as follows:

const PKX_AUDIO_ENCODING_LINEAR_8BIT =0x00100000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT =0x00200000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT_INTEL =0x00200000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT_MOTOROLA=0x20000000;

const PKX_AUDIO_ENCODING_MU_LAW =0x00400000;

const PKX_AUDIO_ENCODING_A_LAW =0x00800000;

const PKX_AUDIO_ENCODING_ADPCM_4BIT_PIKA =0x01000000;

const PKX_AUDIO_ENCODING_ADPCM_4BIT_DIALOGIC =0x02000000;

const PKX_AUDIO_ENCODING_ADPCM_3BIT =0x04000000;

const PKX_AUDIO_ENCODING_GSM_610_MS =0x10000000;

The sample_rate is the sample rate in bits per second of the speech file. The valid sample rates
are as follows:

const PKX_AUDIO_SAMPLING_RATE_4KHZ =0x00010000;

const PKX_AUDIO_SAMPLING_RATE_6KHZ =0x00020000;

const PKX_AUDIO_SAMPLING_RATE_8KHZ =0x00040000;

const PKX_AUDIO_SAMPLING_RATE_11KHZ =0x00080000;

Note that under normal circumstances the Telecom Engine will block the calling task until the
playback is terminated by a terminating event of some kind. This may be the presence of a
DTMF digit in the DTMF digit buffer for the channel, the end of the file, a call to
PKChanAbort() or any other terminating event.

The reason for the function terminating is returned as the return value of the function and may be
one of the following values:

PKChanPlay() Terminating events

const PK_TERM_ERROR =-1;

const PK_TERM_TONE =1;

const PK_TERM_MAXDTMF =2;

const PK_TERM_TIMEOUT =3;

p47

© Zentel Telecom Ltd, 2009

const PK_TERM_ABORT =6;

const PK_TERM_EODATA =7;

const PK_TERM_NONSIL =12;

(see Terminating events)

Also whenever a jump to the onsignal function occurs (for example caused by a hangup signal
after a call to PKCallUseSignal()) and if the function is playing in blocking mode (see Blocking
and non-blocking mode) then the PKChanPlay() will automatically be aborted (i.e the speech
playback will be stopped). If playing in non-blocking mode then it is up to the application to
abort the play and/or wait for it to complete.

Returns: Returns either an error code (E.g. if the file could not be opened) or the reason for the
function termination.

-o-

p48

© Zentel Telecom Ltd, 2009

PKChanPlayh
Synopsis:

 term_code=PKChanPlayh(group,chan,filehandle[bytes,encoding,sample_rate])
Arguments:

group – The logical group number.
channel – The channel number.
filehandle – A file handle returned from a call to sys_fhopen()
[bytes] – Number of bytes to play from the file
[encoding] – The encoding type of voice prompt file to play
[sample_rate] – The sample rate of the voice prompt file.

Description: This function is similar to the PKChanPlay()function except that it takes a file
handle as returned from the sys_fhopen() function in the Telecom Engine standard system library
(CXSYS.DLL). It is up to the application to open the file first and to ensure that the file handle is
released after use.

If the optional argument bytes is specified then the function will terminate with the event
TERM_EODATA once the specified number of bytes has been played from the file. If bytes is
omitted or set to 0 then the function will continue playing from the file until the end of the file is
reached or another terminating event causes the function to finish.

Just as for the PKChanPlay() function the PKChanPlayh() will return the reason for the
termination of the function, which will be one of the following values:

PKChanPlay() Terminating events

const PK_TERM_ERROR =-1;

const PK_TERM_TONE =1;

const PK_TERM_MAXDTMF =2;

const PK_TERM_TIMEOUT =3;

const PK_TERM_ABORT =6;

const PK_TERM_EODATA =7;

const PK_TERM_NONSIL =12;

(see Terminating events)

For encoding and sample_rate values see PKChanPlay().

If the function is playing in blocking mode then a jump to onsignal will cause the playback to be
aborted. In non-blocking mode the playback will continue even after a jump to onsignal and it is
then up to the application to abort the playback and/or wait for it to complete.

Example:

int fh;

 // Open the prompt file..

fh=sys_fhopen("HELLO.VOX","rs");

 if(fh < 0)

 errlog("Error opening file: err=",fh);

 task_hangup(task_getpid());

endif

// If we get here then the file is open so play it

PKChanPlayh(group,chan,fh,PKX_AUDIO_ENCODING_LINEAR_8BIT,PKX_AUDIO_SAMPLING_RATE_8

p49

© Zentel Telecom Ltd, 2009

KHZ);

 // Close the file handle after use..

sys_fhclose(fh);

Returns: Returns either an error code (E.g. if the file could not be opened) or the reason for the
function termination.

-o-

p50

© Zentel Telecom Ltd, 2009

PKChanRecord
Synopsis:

term_code=PKChanRecord(group,chan,filename,max_time_ms,max_silence_ms,[encoding[,sampl
e_rate[,beep]]])
Arguments:

group – The logical group number.
channel – The channel numbernel
filename - The filename to record to
[max_time_ms] – Number of millisecond seconds to record
[silence_ms] – Number of milliseconds of silence to end recording
[encoding] – The audio encoding type of voice prompt file to play
[sample_rate] - Optional sample rate

Description: This function records to the given filename on the specified group and chan. The
number of millisecods to to record is specified by the max_time_ms argument. The recording
will be terminated if the number of millisecods of silence is detected as specified by silence_ms.

 If the encoding and sample_rate are not specified then the last encoding and sample_rate used on
the channel are assumed. At start-up the default encoding and sample_rate is set to and the
sample rate is 6000.

Otherwise the encoding and samperate can be specifed from one of the types defined in the
pika.inc header file as follows:

const PKX_AUDIO_ENCODING_LINEAR_8BIT =0x00100000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT =0x00200000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT_INTEL =0x00200000;

const PKX_AUDIO_ENCODING_LINEAR_16BIT_MOTOROLA=0x20000000;

const PKX_AUDIO_ENCODING_MU_LAW =0x00400000;

const PKX_AUDIO_ENCODING_A_LAW =0x00800000;

const PKX_AUDIO_ENCODING_ADPCM_4BIT_PIKA =0x01000000;

const PKX_AUDIO_ENCODING_ADPCM_4BIT_DIALOGIC =0x02000000;

const PKX_AUDIO_ENCODING_ADPCM_3BIT =0x04000000;

const PKX_AUDIO_ENCODING_GSM_610_MS =0x10000000;

The sample_rate is the sample rate in bits per second of the speech file. The valid sample rates
are as follows:

const PKX_AUDIO_SAMPLING_RATE_4KHZ =0x00010000;

const PKX_AUDIO_SAMPLING_RATE_6KHZ =0x00020000;

const PKX_AUDIO_SAMPLING_RATE_8KHZ =0x00040000;

const PKX_AUDIO_SAMPLING_RATE_11KHZ =0x00080000;

Note that under normal circumstances the Telecom Engine will block the calling task until the
recording is terminated by a terminating event of some kind. This may be the presence of a
DTMF digit in the DTMF digit buffer for the channel, or the maximum number of seconds has
been reached or the maximum duration of silence has been detected etc

The reason for the function terminating is returned as the return value of the function and may be
one of the following values:

p51

© Zentel Telecom Ltd, 2009

const PK_TERM_ERROR =-1;

const PK_TERM_TONE =1;

const PK_TERM_MAXDTMF =2;

const PK_TERM_TIMEOUT =3;

const PK_TERM_SILENCE =5;

const PK_TERM_ABORT =6;

const PK_TERM_EODATA =7;

const PK_TERM_INITSILENCE =11;

const PK_TERM_NONSIL =12;

(See Terminating events)

Also whenever a jump to the onsignal function occurs (for example caused by a hangup signal
after a call to PKCallUseSignal()) and if the function is playing in blocking mode (see Blocking
and non-blocking mode) then the PKChanRecord() will automatically be aborted (i.e the recording
to file will be stopped). If playing in non-blocking mode then it is up to the application to
abort the recording and/or wait for it to complete for some other termination reason.

Returns: Returns either an error code (E.g. if the file could not be opened) or the reason for the
function termination.

-o-

p52

© Zentel Telecom Ltd, 2009

PKChanRecordh
Synopsis:

term_code=PKChanRecordh(group,chan,file_handle,max_time_ms,max_silence_ms,[encoding[,sa
mple_rate[,beep]]])
Arguments:

group – The logical group number.
channel – The channel numbernel
filename - The filename to record to
[max_time_ms] – Number of millisecond seconds to record
[silence_ms] – Number of milliseconds of silence to end recording
[encoding] – The audio encoding type of voice prompt file to play
[sample_rate] - Optional sample rate

Description: This function is similar to the PKChanRecord() function except that it takes a file
handle to a file that has previously been opened by a call to sys_fhopen() function in the Telecom
Engine standard system library (CXSYS.DLL). It is up to the application to open the file first and
to ensure that the file handle is released after use.

The number of millisecods to record is specified by the max_time_ms argument. The recording
will be terminated if the number of millisecods of silence is detected as specified by silence_ms.

 If the encoding and sample_rate are not specified then the last encoding and sample_rate used on
the cahnnel are assumed. At start-up the default encoding and sample_rate is set to and the
sample rate is 6000. See PKChanRecord() for valid encoding and sample_rate values.

Note that under normal circumstances the Telecom Engine will block the calling task until the
recording is terminated by a terminating event of some kind. This may be the presence of a
DTMF digit in the DTMF digit buffer for the channel, or the maximum number of seconds has
been reached or the maximum duration of silence has been detected etc

The reason for the function terminating is returned as the return value of the function and may be
one of the following values:

const PK_TERM_ERROR =-1;

const PK_TERM_TONE =1;

const PK_TERM_MAXDTMF =2;

const PK_TERM_TIMEOUT =3;

const PK_TERM_SILENCE =5;

const PK_TERM_ABORT =6;

const PK_TERM_EODATA =7;

const PK_TERM_INITSILENCE =11;

const PK_TERM_NONSIL =12;

(See Terminating events)

Also whenever a jump to the onsignal function occurs (for example caused by a hangup signal
after a call to PKCallUseSignal()) and if the function is playing in blocking mode (see Blocking
and non-blocking mode) then the PKChanRecord() will automatically be aborted (i.e the recording
to file will be stopped). If playing in non-blocking mode then it is up to the application to
abort the recording and/or wait for it to complete for some other termination reason.

p53

© Zentel Telecom Ltd, 2009

Returns: Returns either an error code (E.g. if the file could not be opened) or the reason for the
function termination.

-o-

p54

© Zentel Telecom Ltd, 2009

PKChanTermDTMF
Synopsis:

PKChanTermDTMF(group, channel,max_digits[,digit_mask])

Arguments:
group – The logical group number.
channel – The channel number.
max_digits – The number of DTMF digits that will cause a termination event
[digit_mask]- Optional string of terminating DTMF digits.

Description: This function allows the channel specific DTMF termination conditions for the
specified group and channel to be set. The max_digits argument specifies the maximum number
of DTMF digits that need to be received before an asynchronous media function will be terminated
by a PKX_EVENT_CHANNEL_TERM_MAX_DIGITS event. At startup this is set to 1 so that
a single digit will terminate all asynchronous media processing functions.

The digit_mask argument is a string specifying the set of DTMF digits that will cause an
asynchronous media processing function to terminate with a
PKX_EVENT_CHANNEL_TERM_DIGIT_MASK event. The set of digits that can be
specified in the digit_mask can be one or more of the following: "1234567890*#ABCD"

Below are some examples:

The following example stops DTMF digits from interrupting a PKChanPlay():

 // Prevent DTMF from interrupting the voice file playback

 PKChanTermDTMF(group,channel,0);

 x=PKChanPlay(group,channel,"MUSIC.VOX");

 // Turn DTMF interruption back on... by setting max_digits to 1

 PKChanTermDTMF(group,channel,1);

The following example allows the PKChanRecord() function to be terminated only by '*' or '#'
digit.

 // Set the digit mask so only '*' or '#' will interrupt the recording
 PKChanTermDTMF(group,channel,0,"*#');

 x=PKChanRecord(group,channel,"RECORDING.VOX");

 // Turn DTMF interruption back on... by setting max_digits to 1 and the digit_mask to "" (empty

string)

 PKChanTermDTMF(group,channel,1,"");

Note that even when asynchronous function termination by DTMF is disabled using this function
the DTMF digits are still detected and placed in the internal PIKA buffer and can be later retrieved
by the PKChanGetDTMF() function. to stop DTMF digits from being detected at all use the
PKChanToneCtl() function.

Note: The PKChanWaitDTMF() function overrides both of these global channel settings with
the max_digits and digit_mask arguments passed directly into the function.

Returns: 0 upon success or -1 if a bad group or channel was provided.

p55

© Zentel Telecom Ltd, 2009

-o-

p56

© Zentel Telecom Ltd, 2009

PKChanTermTimeout
Synopsis:

PKChanTermTimeout(group, channel,timeout_ms)

Arguments:
group – The logical group number.
channel – The channel number.
timeout_ms – Timeout in millisecond before terminating asynchronous function.

Description: This function allows the channel specific Timeout termination condition for the
specified group and channel to be set. If this function is called with a timeout_ms value greater
than 0, then all asynchronous media processing functions will be terminated with a
PKX_EVENT_CHANNEL_TERM_TIMEOUT terminating event after the specified time has been
reached.

Note: For the PKChanRecord(), PKChanRecordh() functions this global timeout value is
overriden by the timeout_ms argument passed directly into the function.

Example: In the following code the PKChanWaitDTMF() function will terminate after 10
seconds even if non of the function specific terminating events (such as the first_delay10ths or
interdigit_delay10ths) has occurred:

 // Set the maximum time for digits to be entered to 10 seconds file playback

 PKChanTermTimeout(group,channel,10000);

 x=PKChanWaitDTMF(group,channel,6,40,40);

 // Turn global timeout termination off again

 PKChanTermTimeout(group,channel,0);

Returns: 0 upon success or a negative error code.

-o-

p57

© Zentel Telecom Ltd, 2009

PKChanTermNonSil
Synopsis:

PKChanTermNonSil(group, channel,timeout_ms)

Arguments:
group – The logical group number.
channel – The channel number.
timeout_ms – Timeout in milliseconds of non silence before terminating an

asynchronous function.

Description: This function allows the channel specific non-silence timeout termination condition
for the specified group and channel to be set. If this function is called with a timeout_ms value
greater than 0, then all asynchronous media processing functions will be terminated with a
PKX_EVENT_CHANNEL_TERM_NONSILENCE terminating event if non-silence is detected
on the channel for this amount of time.

Returns: 0 upon success or a negative error code.

-o-

p58

© Zentel Telecom Ltd, 2009

PKChanToneCtl
Synopsis:

PKChanToneCtl(group, channel,DTMF_Detect, Tone_detect)

Arguments:
group – The logical group number.
channel – The channel number.
DTMF_detect - Turns DTMF detection on (1) or off (0)
Tone_detect - Turns Tone detection on (1) or off (0)

Description: This function turns on or off DTMF and/or Tone detection on the specified group
and channel. Upon startup both DTMF and Tone detection os switched on, but either one of
these can be disabled or enabled with this call.

This function maps to the following PIKA function:

PK_STATUS PK_API PKX_CHANNEL_SetConfig(TPikaHandle channelHandle,PKX_TChannelSettings *

channelSettings);

Returns: 0 upon success or a negative error code.

-o-

p59

© Zentel Telecom Ltd, 2009

PKChanWaitDTMF
Synopsis:

term_code=PKChanWaitDTMF(group,channel,max_tones,first_delay10ths,inter_delay10ths[,term
_digits])
Arguments:

group – The logical group number.
channel – The channel number.
max_tones – The maximum number of tones to receive
first_delay10ths – The time to wait for the first digit to be entered (in 10ths of a second)
inter_delay10ths – The maximum time between digits (in 10ths of a second)
[term_digits] – Optional argument specifying a string of DTMF digits that would

terminate the input

Description: This function allows the application to block waiting for DTMF input to match the
specified terminating conditions defined by the max_tones, first_delay10ths, inter_delay10ths and
term_digits arguments.

The max_tones argument specifies the maximum number of DTMF tones to receive before
terminating the PKChanWaitDTMF() function with a PK_TERM_MAXDTMF return value.
Note that if the internal PIKA DTMF buffer already holds the number of tones specified by
max_tones then the function will terminate immediately and return with PK_TERM_MAXDTMF.

The first_delay10ths specifies the maximum time (in 1/10ths second) that the function will wait for
the first input tone to be received. If this timeout is exceeded then the function will terminate
with a PK_TERM_INITSILENCE return code. IF there are already one or more digits in the
internal PIKA buffer then the first_delay10ths expires immediately and the inter_delay10ths timer
is started. If first_delay10ths is set to 0 value then the function will terminate immediately with
PK_TERM_INITSILENCE if there was not already a digit in the internal PIKA buffer.

The inter_delay10ths timer is started after the first digit has been received and specifies the
maximum time allowed between all successive received digits. If the inter_delay10ths timer is
exceeded then the function will be terminated with a PK_TERM_INTERDELAY return value.

The optional term_digits argument allows the input to be terminated upon receipt of one of a set of
DTMF digits specified as a string of digits. For example if the input is to be terminated by either
a '*' or '#' digit then the term_digits string should be set to "*#". As soon as either of these digits
is received then the function terminates with a PK_TERM_TONE event. The full set of digits
that can be specifed by the term_digits argument is: "1234567890*#ABCD".

Note that this function simply waits for the terminating condition specified by the arguments to be
met. All received digits are held in the PIKA internal buffers until retreived by the
PKChanGetDTMF() function call.

Therefore the PKChanWaitDTMF() and PKChanGetDTMF() functions work in conjunction with
each other. The PKChanWaitDTMF() function sets conditions for which tones to wait for and
the conditions which will cause the PKChanWaitDTMF() to terminate. A call to
PKChanGetDTMF() will copy any DTMF digits it received into the channel specific digit buffer
and then return them to the calling task.

p60

© Zentel Telecom Ltd, 2009

Examples:

// This will wait for upto 4 digits to be received with the first and inter digit delay set to 4 seconds each

x=PKChanWaitDTMF(group,chan,4,40,40);

// Get the digits received from the foreground buffer..

tones=PKChanGetDTMF(group,chan);

// This will wait for upto 4 digits to be received unless a * or # is received, with the first and inter digit delay

set to 4 seconds each

x=PKChanWaitDTMF(group,chan,4,40,40,"*#");

// Get the digits received from the foreground buffer..

tones=PKChanGetDTMF(group,chan);

// This will return immediately with PK_TERM_INITSILENCE unless there is already a DTMF digit already in

the background buffer (first_delay10th set to 0)

x=PKChanWaitDTMF(group,chan,1,0,0);

// Get the digits received from the foreground buffer..

tones=PKChanGetDTMF(group,chan);

Returns: Returns the terminating event or a negative error code.

-o-

p61

© Zentel Telecom Ltd, 2009

PKChanClearDTMF
Synopsis:

PKChanClearDTMF(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function turns removes all DTMF digits from the channel specified by group
and channel. It will remove the DTMF digits from both the PIKA internal buffer as well as the
channel specific buffer maintained by the CXPIKA.DLL library.

This function maps to the following PIKA function:

PK_STATUS PK_API PKX_CHANNEL_ClearDigits(TPikaHandle channelHandle);

Returns: 0 upon success or a negative error code.

-o-

p62

© Zentel Telecom Ltd, 2009

PKChanGetDTMF
Synopsis:

digits=PKChanGetDTMF(group, channel[,max_digits)

Arguments:
group – The logical group number.
channel – The channel number.
[max_digits] - Optional argument to specify the maximum number of digits to retrieve.

Description: This function copies all of the DTMF digits from the PIKA internal DTMF buffer to
the channel specific buffer maintained by the CXPIKA.DLL library for the specified group and
channel. If the option max_digits argument is given then this number of DTMF digits from the
channel specific buffer will be returned to the calling task (or less than max_digits if not that many
are in the buffer). If max_digits is not specified then all of the DTMF digits that are in the
channel specific buffer will be returned to the calling task.

This function maps to the following PIKA function:

PK_STATUS PK_API PKX_CHANNEL_GetDigits(TPikaHandle channelHandle,PK_CHAR *

buffer, PK_INT num_digits);

Returns: Upon success this function returns the set of DTMF digits from the channel specific
DTMF digit buffer, otherwise it will return a negative error code.

-o-

p63

© Zentel Telecom Ltd, 2009

PKChanAbort
Synopsis:

PKChanAbort(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function will abort any asyncronous media processing function that is currently
executing on the specified group and channel. The relevant asyncronous function will then
terminate immediately and return a value of PK_TERM_ABORT.

This function maps to the following PIKA function:

PK_STATUS PK_API PKX_CHANNEL_Stop(TPikaHandle channelHandle);

Returns: 0 upon success or a negative error code.

-o-

p64

© Zentel Telecom Ltd, 2009

PKChanBusyState
Synopsis:

functionID=PKChanBusyState(group, channel)

Arguments:
group – The logical group number.
channel – The channel number.

Description: This function will return a value indicating which asyncronous media function is
currently running on the specified group and channel, otherwise it will return 0 if there is no
asyncronous media function currently active.

The set of values that can be returned from this function are defined in pika.inc as follows:

const PK_MTF_NONE =0;

const PK_MTF_PLAY =1;

const PK_MTF_RECORD =2;

const PK_MTF_WAITTONE =3;

const PK_MTF_PLAYTONE =4;

const PK_MTF_PLAYDIGITS =5;

const PK_MTF_PLAYCPTONE =6;

Returns: The ID of the asyncronous function currently executing on the channel, or 0 if the
channel is idle or a negative error code.

-o-

p65

© Zentel Telecom Ltd, 2009

PKChanBlockMode
Synopsis:

PKChanBlockMode(group, channel,block_mode)

Arguments:
group – The logical group number.
channel – The channel number.
block_mode - 0=Blocking, 1=Single non-blocking call, 2=Indefinite Non-blocking

Description: This function allows for asynchronous media functions (such as PKChanPlay(),
PKChanRecord() etc) to be carried out in either blocking or non-blocking mode. All of the media
functions that operate in this way are known as asyncronous media functions.

In blocking mode the calling Telecom Engine task will block until the asyncronous media
functions has completed after which the function will return with the terminating event that caused
the asyncronous media functions to complete.

The set of asyncronous media functions for which this function allies to is as follows:

term_code=PKChanPlay(group,channel,filename[,encoding,sample_rate])
term_code=PKChanPlayh(group,chan,filehandle[bytes,encoding,sample_rate])
term_code=PKChanRecord
(group,chan,filename,max_time_ms,max_silence_ms,[encoding[,sample_rate[,beep]]])
term_code=PKChanRecordh
(group,chan,file_handle,max_time_ms,max_silence_ms,[encoding[,sample_rate[,beep]]])
term_code=PKChanWaitDTMF
(group,channel,max_tones,first_delay10ths,inter_delay10ths[,term_digits])

In non-blocking mode the function will return immediately and the media function will continue
playing in the background while the Telecom Engine task continues processing. In this case it is
up to the program to wait for the operation to complete (using PKChanBusyState()) or to
specifically abort the speech operation using PKChanAbort().

See Blocking and Non-blocking Mode for more information.

If the block_mode argument is set to 0 then this causes all subsequent asyncronous media functions
to block the calling Telecom Engine task (this is the default behaviour).

If the block_mode flag is set to 1 then the next asyncronous media functions will operate in
non-blocking mode. After this media function has completed then the channel mode reverts back
to blocking, so that further calls to asyncronous media functions will block the calling task as
normal.

If the block_mode flag is set to 2 then the channel will be placed into non-blocking mode
indefinitely so that all subsequent blocking speech functions will operate in non-blocking mode.
 A call to PKChanBLockMode() with the block_mode flag set to 0 will be required to set the
channel back to blocking mode again.

Note that when in blocking mode a jump to onsignal will cause the asyncronous media functions to

p66

© Zentel Telecom Ltd, 2009

be immediately aborted with a call to PKX_CHANNEL_Stop(). However in non-blocking
mode a jump to onsignal will not automatically abort the asyncronous media function and it is
thus up to the program to call PKChanAbort() to abort the function (or else to use
PKChanBusyState() to wait for the function to finish).

Returns: 0 upon success or a negative error code.

-o-

p67

© Zentel Telecom Ltd, 2009

Index

 - I -
Introduction 5

- A -
A Simple Example 6

- T -
Terminating Events 13

- B -
Blocking and Non-blocking Mode 16

- P -
PKChanTrace 42
PKGroupTrace 20
PKCallWait 22
PKCallLastEvent 25
PKCallState 26
PKCallAccept 27
PKCallAnswer 28
PKCallReject 29
PKCallHangup 30
PKCallRelease 32
PKCallGetInfo 33
PKCallGetParm 34
PKCallSetParm 35
PKCallClrParm 36
PKCallMake 37
PKCallUseSignal 38
PKCallEarlyMedia 39
PKCallMediaBridge 41
PKCallSendInfo 40
PKChanState 43
PKChanLastEvent 44
PKChanPlay 46
PKChanPlayh 48
PKChanRecord 50
PKChanRecordh 52
PKChanTermDTMF 54
PKChanTermTimeout 56
PKChanTermNonSil 57
PKChanToneCtl 58
PKChanWaitDTMF 59
PKChanClearDTMF 61
PKChanGetDTMF 62

p68

© Zentel Telecom Ltd, 2009

PKCallTrace 21

- C -
Call Control Library Quick Reference 18

- P -
PKCallWaitAbort 24
PKChanAbort 63

- M -
Media Processing Library Quick Reference 19

- E -
Example to Handle Multiple Channels 10

- P -
PKChanBlockMode 65
PKChanBusyState 64

© Zentel Telecom Ltd., 2009
www.telecom-engine.com

	Table of Contents
	Introduction
	A Simple Example
	Example to Handle Multiple Channels
	Terminating Events
	Blocking and Non-blocking Mode
	Call Control Library Quick Reference
	Media Processing Library Quick Reference
	PIKA HMP Call Control Function Reference
	PKGroupTrace
	PKCallTrace
	PKCallWait
	PKCallWaitAbort
	PKCallLastEvent
	PKCallState
	PKCallAccept
	PKCallAnswer
	PKCallReject
	PKCallHangup
	PKCallRelease
	PKCallGetInfo
	PKCallGetParm
	PKCallSetParm
	PKCallClrParm
	PKCallMake
	PKCallUseSignal
	PKCallEarlyMedia
	PKCallSendInfo
	PKCallMediaBridge

	PIKA HMP Media Processing Function Reference
	PKChanTrace
	PKChanState
	PKChanLastEvent
	PKChanPlay
	PKChanPlayh
	PKChanRecord
	PKChanRecordh
	PKChanTermDTMF
	PKChanTermTimeout
	PKChanTermNonSil
	PKChanToneCtl
	PKChanWaitDTMF
	PKChanClearDTMF
	PKChanGetDTMF
	PKChanAbort
	PKChanBusyState
	PKChanBlockMode

