
Telecom Engine

© Zentel Telecom Ltd, 2009



p2

© Zentel Telecom Ltd, 2009

Table of Contents

The TE Programming Language 12
    Introduction 12
    A First Look at the Language 12
    Notes on Style 15
    Formal Language Definition 16
        Introduction 16
        Syntax definitions 17
        Program Structure 18
            Program Structure 18
        Declaration Block 19
            Declaration Block Definition 19
            Declaration Block Examples 19
        Function Block 21
            Function Block Definition 21
            Onsignal Declaration Definition 22
            Function Declaration Definition 22
            Function Block Examples 22
        Statement Block 23
            Statement Block Definition 23
            Expression Statement 24
                Expression Statement Definition 24
                Assignment Expression 26
                Function Expression 26
                Example Expression statements 27
            Goto Statement 27
                Goto Statment Definition 27
                Goto Statement Example 27
            Jump Statement 28
                Jump Statement Definition 28
                Jump Statement Example 29
            Label Statement 29
                Label Statement Definition 29
                Label Statement Example 30
            Return Statement 30
                Return Statement Definition 30
                Return Statement Example 30
            Restart Statement 31
                Restart Statement Definition 31
                Restart Statement Example 31
            Stop Statement 32
                Stop Statement Definition 32
                Stop Statement Example 32
            While Statement 32
                While statement Definition 32
                While Statement Example 33
            Do Statement 33
                Do Statement Definition 33
                Do Statement Example 34



p3

© Zentel Telecom Ltd, 2009

            For statement 34
                For Statement Definition 34
                For Statement Example 35
            Break Statement 36
                Break Statement Definition 36
                Break Statement Example 36
            Continue Statement 37
                Continue Statement Definition 37
                Continue Statement Example 37
            If statement 37
                If Statement Definitions 37
                If Statement Example 38
            Switch Statement 39
                Switch Statement Definition 39
                Switch Statement Example 39
    More on Expressions 40
        Expression Types 40
        Arithmetic Expressions 40
        Logical Expressions 42
        Assignment Expressions 44
        Constant Expressions 45
        Function Expressions 47
    More on Operators 47
        TE  Language Operators 47
        Arithmetic Operators 48
        Comparison Operators 48
        Logical Operators 49
        Assignment Operators 49
        Indirection Operators 49
        Miscellaneous Operators 52
        Ambiguous Operators 52
        String Concatenation Operator 52
        The Conditional Expression Operator 53
    More on Functions 53
        More on Functions 53
    More on Variables 55
        More on Variables 55
        More on Arrays 56
    Compiler Directives 57
        Compiler Directives 57
        The $include Directive 57
        The $if Directive 58
The TE Compiler 59
    Introduction 60
    Compiler Options 60
    Environment Variables 64
    Loading DLLs and .DEF files 65
    Function Name Resolution 66
The TE Run-Time Engine 67
    Introduction 67
    Command Line Options 68
    Registry Settings 69



p4

© Zentel Telecom Ltd, 2009

    Scrolling Log Tabs 70
    Library Configuration Tab 73
    Tools Tab 75
The TE Standard Library Set 76
    Introduction 76
    Manual Conventions 77
    Task Management Library 78
        Introduction 78
        Library Quick Reference 79
        Task Management Library Function Reference 80
            task_spawn 80
            task_chain 81
            task_exec 81
            task_parentid 82
            task_return 82
            task_sleep 83
            task_hangup 83
            task_defersig 84
            task_clrdefer 85
            task_getpid 86
            task_arg 86
            task_kill 86
    System library 87
        Introduction 87
        Library Limits and Defaults 87
        Side Effects From Signals 88
        System Library Quick Reference 88
        System Library Function Reference 89
            Buffer Manipulation Functions 89
                sys_bufuse 89
                sys_bufrls 90
                sys_bufrlsall 90
                sys_bufcopy 90
                sys_bufmove 91
                sys_bufget 91
                sys_bufset 91
            File Handle Functions 92
                sys_fhopen 92
                sys_fhclose 93
                sys_fhcloseall 93
                sys_fhseek 94
                sys_fhreadbuf 94
                sys_fhwritebuf 95
                sys_fhgetline 96
                sys_fhputline 96
                sys_fhwrites 97
                sys_fheof 97
                sys_fhlock 98
                sys_fhunlock 98
                sys_fhsetsize 98
            File System Functions 99
                sys_fcopy 99



p5

© Zentel Telecom Ltd, 2009

                sys_dirremove 99
                sys_frename 100
                sys_dirfirst 100
                sys_dirnext 101
                sys_diskfree 101
                sys_fdelete 102
                sys_dirmake 102
                sys_gethandle 102
                sys_finfo 103
            Date and Time Functions 103
                sys_date 103
                sys_time 104
                sys_ticks 104
                sys_timeadd 104
                sys_timesub 105
                sys_dateadd 105
                sys_tmrstart 106
                sys_tmrsecs 106
                sys_settime 106
                sys_datecvt 107
            Other System Functions 107
                sys_exit 107
                sys_getenv 108
    Terminal Console Library 108
        Introduction 108
        Terminal Console Library Quick Reference 111
        Terminal Console Function Reference 112
            applog 112
            syslog 113
            errlog 114
            tracelog 114
            term_errctl 115
            term_log 115
            term_resize 116
            term_size 116
            term_write 117
            term_scroll_area 117
            term_cur_pos 117
            term_print 118
            term_box 118
            term_colour 119
            term_attr_def 120
            term_put_nch 123
            term_fill 123
            term_clear 124
            term_kbget 125
            term_kbgetx 125
            term_kbqsize 127
            term_kbedit 128
    ActiveX Data Ojects (ADO) Database Library 129
        Introduction 129
        Some Simple Examples 130
        Blocking or non-blocking mode 133



p6

© Zentel Telecom Ltd, 2009

        Performance and blocking calls 133
        Private and Public Objects 134
        Error Codes 135
        ADO Library Function Quick Reference 138
        ADO Function Reference 139
            adoTrace 139
            adoErrVerbose 139
            adoBlockMode 140
            adoLastError 140
            adoBusyState 140
            adoConnection 141
            adoConnOpen 142
            adoConnParmGet 143
            adoConnParmSet 145
            adoConnClose 145
            adoConnGetHandle 146
            adoConnState 146
            adoConnTransBegin 147
            adoConnTransCommit 147
            adoConnTransCancel 148
            adoRecordSet 148
            adoRSetQuery 149
            adoRSetCmd 152
            adoRSetResync 152
            adoRSetRequery 153
            adoRSetParmGet 154
            adoRSetParmSet 156
            adoRSetClose 156
            adoRSetGetHandle 156
            adoRSetRecCount 157
            adoRSetMove 157
            adoRSetMoveFirst 158
            adoRSetMoveLast 159
            adoRSetMoveNext 159
            adoRSetMovePrev 159
            adoRSetAddNew 160
            adoRSetUpdate 160
            adoRSetCancelUpd 161
            adoRSetUpdBatch 161
            adoRSetCancelBatch 161
            adoRSetDelete 162
            adoRSetState 162
            adoRSetIsBOF 163
            adoRSetIsEOF 163
            adoFldCount 164
            adoFldGetName 164
            adoFldGetValue 165
            adoFldSetValue 165
            adoFldParmGet 166
            adoFldParmSet 167
            adoErrCount 167
            adoErrMessage 168
            adoErrValue 168
            adoErrNative 169



p7

© Zentel Telecom Ltd, 2009

            adoErrClear 169
    String Manipulation Library 169
        Introduction 169
        String Library Quick Reference 170
        String Manipulation Function Reference 171
            strtok 171
            strlen 172
            strsub 172
            strcnt 173
            strstrip 173
            strend 174
            strpos 175
            strupr 175
            strlwr 175
            strcmp 176
            strindex 177
            strselect 177
            strltrim 178
            strrtrim 178
            strrjust 179
            strljust 179
            itoc 180
            ctoi 180
            itox 181
            xtoi 181
            strtohexi 182
            inttohexi 182
            unstohexi 183
            hexitostr 184
            hexitoint 184
            hexitouns 185
    Inter-task Messaging Library 186
        Introduction 186
        Inter-task Messaging Libary Quick Reference 187
        Inter-task Messaging Function Reference 188
            msg_setname 188
            msg_read 188
            msg_send 189
            msg_flush 189
            msg_senderid 190
            msg_sendername 190
            msg_freecount 191
    Global Array Library 191
        Introduction 191
        Global Array Library Quick Reference 192
        Global Array Function Reference 192
            glb_set 192
            glb_get 192
            array_dim 193
            array_free 194
            array_set 194
            array_get 195
            array_search 195



p8

© Zentel Telecom Ltd, 2009

            array_srchset 196
    Semaphore Library 197
        Introduction 197
        Semaphore Library Quick Reference 198
        Semaphore Function Reference 198
            sem_test 198
            sem_set 198
            sem_clear 199
            sem_clrall 199
    Clipper Database Library 200
        Clipper Database Library Quick Reference 200
        Introduction 200
        Clipper Database Function Reference 203
            db_open 203
            db_ixopen 203
            db_get 204
            db_append 204
            db_fget 205
            db_fput 205
            db_rls 206
            db_close 206
            db_nrecs 206
            db_nfields 207
            db_fwidth 207
            db_fname 207
            db_rlsall 208
            db_first 208
            db_next 209
            db_prev 210
            db_key 210
            db_recnum 211
            db_flock 211
    Floating Point Library 211
        Introduction 212
        Floating Point Library Quick Reference 212
        Floating Point Library Reference 212
            fp_decs 212
            fp_add 212
            fp_sub 213
            fp_mul 213
            fp_div 214
            fp_pow 214
            fp_rnd 215
    Sockets Library 215
        Introduction 215
        Sockets Library Quick Reference 216
        Sockets Function Reference 216
            Sconnect 216
            Sclose 217
            Srecv 218
            Slisten 219
            Saccept 220



p9

© Zentel Telecom Ltd, 2009

            Ssend 220
            Scheck 221
            Shostname 222
            SopenDGRAM 222
            SsendDGRAM 222
            SrecvDGRAM 223
            Strace 224
    Aculab E1/T1 Card Library 224
        Introduction 224
        The ACUCFG.CFG Configuration file 224
        Run-time Initialisation and configuration 228
        Some Simple Examples 230
        Simple VOIP -> TDM example 233
        Aculab Call Control Quick Reference 236
        Aculab Call Control Function Reference 237
            CCnports 237
            CCsigtype 237
            CCsiginfo 238
            CCtrunktype 239
            CCwatchdog 240
            CCalarm 240
            CCtrace 241
            CCgetslot 241
            CClisten 242
            CCunlisten 243
            CCstate 243
            CCuse 244
            CCwait 244
            CCabort 245
            CCenablein 246
            CCaccept 246
            CCmkcall 247
            CCdisconnect 247
            CCrelease 248
            CCsetparm 249
            CCclrparms 262
            CCgetparm 263
            CCalerting 267
            CCgetcause 267
            CCoverlap 268
            CCgetcharge 268
            CCsetupack 269
            CCproceed 270
            CCprogress 270
            CCgetaddr 271
            CCanscode 271
            CCputcharge 272
            CCnotify 272
            CCkeypad 273
            CChold 273
            CCreconnect 274
            CCenquiry 274
            CCsetparty 275
            CCtransfer 275



p10

© Zentel Telecom Ltd, 2009

            CCgetxparm 276
            CCsetxparm 278
            CCclrxparms 278
            CCgetcnctless 279
            CCmkxcall 279
            CCsendfeat 280
            CCsndcnctless 280
            CCstrtohex 281
            CCinttohex 281
            CCunstohex 282
            SWmode 282
            SWquery 283
            SWset 283
            CCcreateTDM 283
    Aculab Prosody Card Library 283
        Introduction 284
        Some Simple Examples 284
        Simple VOIP example 286
        Board Opening Order 288
        Nailing transmit timeslots to H.100 or SCBUS 288
        Indexed Prompt Files (IPFs) 289
        Teminating Events 290
        Blocking and Non-Blocking Mode 292
        Aculab Prosody Speech Functions Quick Reference 293
        Aculab Prosody Speech Function Reference 294
            SMgetmodules 294
            SMgetchannels 294
            SMgetcards 295
            SMcardinfo 295
            SMmodinfo 296
            SMplay 296
            SMplayh 298
            SMrecord 299
            SMsetrecparm 300
            SMgetrecparm 302
            SMabort 302
            SMgetslot 303
            SMlisten 304
            SMunlisten 304
            SMctlDtmf 305
            SMctlPulse 305
            SMctlCPtone 305
            SMctlGrunt 306
            SMtoneint 306
            SMwaittones 307
            SMgetttones 308
            SMclrtones 308
            SMplaytone 309
            SMplaydigits 309
            SMplayptone 309
            SMgetrecrognised 310
            SMmode 312
            SMtrace 312
            SMaddASRvocab 313



p11

© Zentel Telecom Ltd, 2009

            SMclrASRvocabs 313
            SMsetASRchanparm 313
            SMaddASRitem 314
            SMclrASRitems 315
            SMctlASR 315
            SMconfstart 316
            SMconfjoin 316
            SMconfleave 318
            SMconfend 319
            SMdump 319
            SMstate 319
            SMdetected 320
            SMword 320
            SMplayph 321
            SMplaypr 322
            SMplaystrph 322
            SMplaystrphm 323
            SMcreateVMP 324
            SMtraceVMP 325
            SMdestroyVMP 325
            SMsetcodec 326
            SMclrcodecs 327
            SMcreateTDM 328
            SMtraceTDM 328
            SMdestroyTDM 329
            SMfeedlisten 329
            SMfeedunlisten 331



p12

© Zentel Telecom Ltd, 2009

The TE Programming Language

Introduction
The Telecom Engine (TE) Language is a high level functional programming language that provides
rapid  application  development  and  easy  code  maintenance  for  large  and  complex
telecommunications applications.       The syntax of  the  language has  some similarity to  the  ‘C’
programming language but has been simplified to provide protection against common bugs that can
have  a  catastrophic  effect  on  critical  telecommunications  systems.     Random  system  crashes
caused  by  memory  overwrites  or  invalid  pointer  accesses  in  ‘C’  or  ‘C++’  can  be  a  nightmare
scenario for a system that is taking thousands of calls a day or passing millions of minutes of voice
traffic a month.

All TE applications are compiled to byte-code, in a similar way to the Java language, and this byte
code  is  then  executed  by  the  TE  Runtime  engine.        This  run-time  engine  provides  a  self
contained  and  rubust  environment  within  which  the  byte  code  can  be  run,   providing  protection
from system crashes and bugs to ensure a stable and crash free system.  

The Runtime Engine has been designed to be extremely fast, borrowing techniques from PC games
programming to  allow  high  density  systems to  be  run  in  a  single  PC  chassis.    This  means  that
many thousands of tasks/byte code programs can be running simultaeously in a single PC chassis
allowing for high density solutions to be implemented. 

The source code for an application should be created using a text editor in a file with the extension
.TES  (Telecom  Engine  Source  file).    Additional  source  files  with  the  extension  .FUN  can  be
provided  which  contain  the  source  code  for  individual  functions  (the  .FUN  file  should  have  the
same name as  the  function it  contains).        The TES file  is  then compiled using  the  TCL.EXE
compiler  to  create  a  file  with  the  same  name  but  with  a  .TEX  extension  (Telecom  Engine
eXcecutable).    This  .TEX  file  contains  the  byte  code  operations  that  are  executed  by  the  TE
Runtime Engine.

The  Telecom  Engine  is  a  multi-tasking  environment  where  many  hundreds  of  byte  code
applications can be running simultaneously.    Typically for Telecommunications applications there
will be a single task running for each network channel which will handle the processing of inbound
and outbound calls and the playing of speech files and received DTMF etc on that channel.     Many
other  tasks  could  also  be  running  to  manage  the  allocation  of  various  resources,  updating  the
screen, communicating with remote host systems etc.       The Telecom Engine is designed so that
once started each task  requires  little  or  no  operating system resources and the  engine  can  switch
between  tasks  extremely  quickly  creating  a  real-time  multitasking  environment  that  can  process
hundreds (or thousands) of simultaneous calls.

-o-

A First Look at the Language
An important point  to  note regarding the Telecom Engine language is  that  there  are  no ‘built-in’
functions.       All  external  functionality  for  operations  such  as  console  input/output,  database
access,  speech  and  network  card  functionality,  inter-process  communications  etc.  are  all
implemented as DLLs.      The language itself does not include any of these functions as part of the



p13

© Zentel Telecom Ltd, 2009

language  definition,  which  means  that  the  language  is  not  tied  down  to  any  particular  hardware
vendor or to any specific implementation.
 
However without any of the above functionality the language would be pretty useless, therefore a
set of DLLs is provided that offer most of the functions that are required for the implementation of
telecommunication  applications.    This  set  of  functions  will  be  referred  to  as  the  TE  standard
function  set.    However,  since  these  functions  are  implemented  as  DLLs there  is  no  reason  why
these could not be extended or even completely replaced with another implementation if so desired.

In the following description of the TE language, all external functions used in the examples will be
one of those from TE Standard function set.     For a full description of these functions see the TE
Standard Library Set reference manual.

As is usual will all programming guides we will start with an example ‘Hello World’ application:

main

    applog("Hello World");

endmain

All Telecom Engine programs consist of a pair of main … endmain statements between which the
application statements are written.    In the above application the applog() function writes the string
"Hello  World"  to  the  application  console  and  to  the  application  log  file  .     This  function  is
provided by the CXTERMX.DLL function library (See TE Standard Library Set Manual).

This is not a very useful program for a telecommunications system so lets move quickly to another
example  using  the  Aculab  functions  provided  by  the  CXACULAB.DLL and  CXACUDSP.DLL
function libraries:

$include "aculab.inc"

int port, chan, vox_chan, x;

var filename:64;

main

    port=0

    chan=1;

    vox_chan=1;

    filename="hello.vox";

    // Make full duplex H.100 bus routing between vox channel and network port/channel

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan, CCgetslot(port, chan));

    // Enable inbound calls on this port/channel

    CCenablein(port,chan);

    

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER);

          if(x == CS_INCOMING_CALL_DETECTED)

               break;

          endif

    endwhile

    // Answer the call

    CCaccept(port,chan);

    // Play a vox file to caller



p14

© Zentel Telecom Ltd, 2009

    SMplay(vox_chan,filename);

   

    // Hangup the call 

    CCdisconnect(port,chan,CAUSE_NORMAL);

    // Wait for state to return to IDLE the release call

    while(1)

       x=CCwait(port,chan,CC_WAIT_FOREVER);

       if(x == CS_IDLE)

             break;

       endif

    endwhile

    // release the call

    CCrelease(port,chan);

    

    // restart the application to wait for another call..   

    restart;

endmain

This  program  initialises  a  port/channel  on  an  Aculab  E1/T1  board  for  incoming  calls
(CCenablein())  ,  then  enters  a  loop  waiting  for  inbound  calls  (CCwait()).    Upon  receiving  an
inbound call it answers the call (CCaccept()), plays a speech file (SMplay()), then finally hangs-up
the call and releases the call handle before restarting the program to wait for the next call.          
This could be considered the ‘Hello World’ of telecommunications programming.

Readers with some familiarity with ‘C’ will notice a few similarities between the TE language and
‘C’.      However where ‘C’ uses curly braces ( { and } ) to delimit statement blocks, the Telecom
engine  used    if…else…endif,    while…endwhile,   for…endfor,    do…until(),  
switch…endswitch,  etc.

The first statement in the above application is as follows:

$include "aculab.inc"

This  statement  instructs  the  compiler  to  include  the  contents  of  the  file  “aculab.inc”  into  the
program file  as  though the  statements  contained in  “aculab.inc” had  been  typed directly into  the
program  file.      These  files  are  usually  used  to  define  common  global  variables  or  constant
definitions  (for  example  the  CS_INCOMING_CALL_DETECTED,  CC_WAITFOREVER,
CS_IDLE are  all  defined in  the  "aculab.inc" file.)  and are  often known as  ‘header’  files  (usually
with “.inc” or “.h” extensions).  

The statements after the $include in the program show the declaration of some global variables.  
There are two types of variables allowed in the TE language: ‘var’ and ‘int’ types.      Actually all
variables in  the Telecom Engine are stored as ASCII strings and the only difference between the
type ‘var’  and the type ‘int’  is  that the TE run-time engine will  automatically convert the values
stored into ‘int’  types to a numeric representation of  the string.        So  if  you assign the  string
“abc” to a variable of type ‘var’ then “abc” is what would be stored in the variable, whereas if you
attempt to assign “abc” to a variable of type ‘int’ then this will be evaluated to 0 and the string “0”
will be stored into the variable.       This is described in more detail later.

At the top of the main program section you will see the global variables being initialised then the
functions from the CXACULAB.DLL and CXACUDSP.DLL libraries are called to wait for a call,
accept the call, play a speech file ("hello.vox") then hang-up and release the call.



p15

© Zentel Telecom Ltd, 2009

Finally  the  restart  statement  instructions  the  TE  runtime  engine  to  clear  all  variables  and  start
again from the top.

Throughout the code you will  notice that  comments are included by prefixing the comment by //
characters.     All text from the // marker to the end of the current line are ignored by the compiler. 
    Alternatively comments may also be prefixed with the # character depending on the preference
of the programmer.

-o-

Notes on Style
Since the language is similar in many ways to the 'C' programming language then a number of
coding style suggestions can be taken from the common 'C' programming style.     Programming
style is important since it makes a program more readable to a human, thus making debugging and
code maintenance easier for the programmer.

For example, the following code is perfectly valid and will compile successfully,  but is difficult to
read by a human programmer:

main int i; int j; for(i=0;i<10;i++) for (j=0;j<10;j++) int tot; tot=i*j; applog("tot=",tot); endfor endfor endmain

Whereas the following code is much easier to read:

main 

int i;

int j;

for(i=0;i<10;i++) 

for (j=0;j<10;j++) 

int tot;

tot=i*j;

applog("tot=",tot); 

endfor 

endfor 

endmain

As you can see, by using appropriate indentation and having only one statement per line the code
becomes much more readable.    Typically another level of indentation should be used for each new
statement block, and the if...else..endif,  while..endwhile, for..endfor statements should all have
the same level of indentation.

Also, since it is possible to nest if..else..endif statements within each other, then a decision needs
to be made about how to indent these nested statements.        It is suggested that when several 
if..else..endif statements are nested within each other then those statements which are at the same
logical level should be indented to the same extent.            What is meant by the same logical level
will depend upon the context, but will typically be where a certain variable is been tested against
various values.

For example in the following code there are a number of tests being made against the variable x in
a set of nested  if..else..endif statements, and it is tempting to indent each of these nested



p16

© Zentel Telecom Ltd, 2009

statements one indent further for each statement block as follows:

if(x==0)

applog("Got x=0");

else

if(x==1)

applog("Got x=1");

else

if(x==2)

applog("Got x=2");

else

if(x==3)

applog("Got x=3");

else

applog("Got something else");

endif

endif

endif

endif

The above code is perfectly valid but as you see the nested if..else..endif statements are being
indented further and further to the right, making the code more difficult to interpret (especially as
the code gets larger).     

Since the test of each value of  x is at the same logical level then a better coding style would be to
keep the indent of each if..else..endif statement at the same indentation as follows:

if(x==0)

applog("Got x=0");

else if(x==1)

applog("Got x=1");

else if(x==2)

applog("Got x=2");

else if(x==3)

applog("Got x=3");

else

applog("Got something else");

endif endif endif endif

Notice that the number of endif statements at the end then just needs to match the number of if
statements that have previously appeared at the same logical level and indentation.

-o-

Formal Language Definition

Introduction
Now that a couple of “Hello World” applications have been given inorder to provide a feel for the
language,  a more formal definition of the language and program structure is given below.  

There are a few things that should be noted before we start:

a)  The language is case sensitive.    This means that and identifier AbC is different to identifier
aBc.   Also all language keywords are in lower-case, and use of upper-case characters would result



p17

© Zentel Telecom Ltd, 2009

in the compiler reporting a syntax error.

b) The compiler makes no distinction between tabs, space and newline characters.    These ‘white
space’ characters are all equivalent and statements can span multiple lines so long as they conform
to the rules of syntax provided (E.g. terminated with a semi-colon).       

The exceptions to the above rule are:   

      i)  Comments only apply until the end of the current line 
      ii) Constants strings (stings of characters between double quotes) cannot span across multiple
lines.

c)   Similarly  multiple  statements  may  be  included  in  a  single  line,  although  this  is  discouraged
because it generally makes the source code harder to read.     

d) Identifiers (variable names, constant names and function names) must begin with an alphabetic
character  (A-Z,  a-z)  or  an  underscore  character  (  _  ).     This  may  be  followed  by  zero  or  more
alphabetic character  (A-Z, a-z), numbers (0-9) or underscores ( _ ).    Indentifiers may be up to 127
characters long.    

e) The scope of constants and variables is as follows:

        - Variables and constants defined before the main statement are global in scope.
        - Variables defined between the main…endmain statement block or between a
func…endfunc block only have scope from the line they are declared on to the following endmain
or endfunc statement.
        - Variables defined outside of a func...endfunc statements only have scope from the point
from where they are declared to the end of the source file the were declared in.
        
f) Variable of type int are similar to having a var type of length 21.       This provides enough space
for a 64 bit integer value and sign to be stored as a null terminated string (i.e 22 bytes are set aside,
21 for the numeric string and sign and one for the null  terminator).    Note however that in the
current version of the TE all integer arithmetic is signed 32 bit.

 

-o-

Syntax definitions
The syntactical structure of  the  TE language is  defined  in  the  following sections.      Below is  a
description of the form that these syntactical definitions will take.

Telecom Engine Language keywords and symbols are highlighted in bold font.

Indentifiers  are  names  of  constants,  variables,  arrays and  functions  are  specified  by  the  keyword



p18

© Zentel Telecom Ltd, 2009

identifier where the type of identifier will depend on the context.

Curly braces {} are used to define optional keywords or items in the syntax definition.

Three dots: ... (otherwise known as elipses) means  "... and so on" which indicates that the previous
definition can be repeated.

Angled  brackets  <>  are  included  where  a  constant  value  is  required  with  a  description  of  the
constant inside the the brackets, E.g. <length>

Where several definitions are listed one line after another, then it can usually be taken that the word
 or can be implied between the definitions (if or is not expicitely used).

Thus, if  you see

Definition1
Definition2
Definition2

This can be read as

Definition1
or
Definition2
or
Definition2

-o-

Program Structure

Program Structure
The structure of a TE program is as follows:

{ declaration_block }

main
    { statement_block }
endmain

{ function_block }

All  programs  must  have  a  main…endmain  block  and  include  optional  decaration_block,
statement_block and function_block.    

The smallest and most useless (but syntactically correct) program is the following:



p19

© Zentel Telecom Ltd, 2009

   // Totally useless but syntactically correct

   main

   endmain

-o-

Declaration Block

Declaration Block Definition
A declaration_block  is  where  variables,  arrays and  constants  are  declared.     declaration_blocks
can  appear  before  the  main…endmain  section  in  which  case  it  declares  global  variables  and
constants,  or  it  can  appear  as  a  statement  anywhere  inside  a  statement_block  in  which  case  the
variables  and  constants  are  local  to  the  function  in  which  they  are  declared.       They  can  also
appear  in  a  function_block in  which  case  they are  local  to  the  source  file  in  which  there  appear
(from the point of declaration to the end of the current source file).

The syntax of a declaration_block is as follows:

{dec}

        var identifier : <length> {, var identifier : <length> {,…}} ;
        int identifier {, identifier {, … } }  ;
        var  identifier  [  <start_offs>  ..  <end_offs>  ]  :  <length>   {,  identifier  [  <start_offs>  ..
<end_offs> ] : <length> {, ... } } ; 
        int identifier [ <start_offs> .. <end_offs> ]  {, identifier [ <start_offs> .. <end_offs> ] {, ... }
} ;                     
        const identifier = <value> {, const identifier = <value> {,…} } ;
        …

{enddec}

-o-

Declaration Block Examples
Declarations can be surrounded by optional dec…enddec statements (which sometimes help with
the readability of the code).   However the choice of whether to include dec..enddec keywords is
up to the programmer:

This:

dec

    var a:10;

    var b:10;

enddec

is equivalent to:



p20

© Zentel Telecom Ltd, 2009

     var a:10;
    var b:10;

Wherever a declaration_block is valid.

The declarations themselves can be single declarations like this:

var a:10;

var b:10;

var c:10;

var d[1..10]:8;

Or can be included in a single line as a comma separated list terminated by a semi-colon:

var a:10, b:10, c:10, d[1..10]:8;

Similiarly int types can be declared one to a line or listed on a single line separated by comma.    

int z;

int y;

int a,b,c,d[1..10];

and also the same for const types which can be decared:

const z= "abc";

const y=4;

const a= "123", b=3, c=-14;

int types, var types or const types cannot be mixed in a single comma separated list.

Arrays are declared by specifying the start and end indexes of the array in square brackets after the
array variable name (separated by double dots).   For example :

var myarray1[1..10];

int myarray2[61..70];

This declares two arrays:  myarray1 which has ten elements with indexes ranging from 1 to 10 and
myarray2 which has ten elements with indexes ranging from 61 to 70.     Elements from the array
can be referenced in the code by specifying the index in square brackets:

a=myarray1[3];

myarray2[62]=4;

If an index is specified to an array that is outside of its index range then this will not be picked up
during the compile, it will only be spotted at run-time when an error message will be logged to the
error screen and to the error logs.    The reason for this is  that  the index to an array  can be any
expression, for example:

a=myarray[a*b+4];

It cannot be established at compile time whether any expression is going to be a valid index to an
array and therefore these errors are only picked up at run-time.

Constant declarations allow an identifier to be assigned a constant value which can be used instead
of that value anywhere in the code.   This is typically used to make programs more readable and to



p21

© Zentel Telecom Ltd, 2009

allow easier maintenance of code.     

For  example,  in  the  following  code  it  is  clear  that  we  are  waiting  for  the  event
CS_INCOMING_CALL_DETECTED   which  is  easier  to  read  than  if  we  were  checking  that
CCwait() was returning the value 2:

const CS_INCOMING_CALL_DETECTED=2;

int port,chan,x;

main

   port=0; chan=1;

   while(1)

       x=CCwait(port,chan,0);

       // This is easier to understand than using ‘if(x == 2)’

       if(x == CS_INCOMING_CALL_DETECTED)

            break;

       endif

   endwhile

   

endmain

-o-

Function Block

Function Block Definition
The  function  block  consists  of  zero  or  one  onsignal_declaration  and  zero  or  more
function_declarations.       The onsignal  function is  the  function that  is  jumped  to  when a  signal
(usually a hangup signal) is received.       Additional declaration_blocks may also apprear between
the function_declarations and onsignal_declaration

{ declaration_block  }
{ onsignal_declaration }
{ declaration_block  }
{ function_declaration }
{ declaration_block }
{ function_declaration }
{ declaration_block }
…
etc

The  order  of  the  onsignal_declaration  and  the  function_delarations  is  not  important  but  the
onsignal_declaration must  reside in the same source file  as the main…endmain  statements (The
main .TES source file),  whereas the function_declarations can optionally reside in separate (.FUN)
source files (or .TEL library file).

The  syntax  of  the  onsignal_declaration  and  function_declaration  are  defined  in  the  following
sections.



p22

© Zentel Telecom Ltd, 2009

-o-

Onsignal Declaration Definition
The  syntax  of  the  onsignal_declaration  required  consists  of  a  statement_block  between
onsignal...endonsignal keywords.       The onsignal is jumped to when a hangup signal is received
by the program (usually when a call disconnect signal is received from the calling party or called
party in a telecommunications application).

onsignal

    { statement_block }

endonsignal

-o-

Function Declaration Definition
The sytax of  a  function declartion is  the  func  keyword followed by the  function  name identifier
followed by parenthesis containing zero or more argument names.    After the statement_block the
endfunc keyword terminates the function declaration.

func identifier ( { identifier { , identifier { , … } )

    { statement_block }

endfunc

-o-

Function Block Examples
The  function_block  always  follows  the  main..endmain  section  and  may  contain  an  optional
onsignal_declaration  and  zero  or  more  function_declarations  and  declaration_blocks.       If  an
onsignal_declaration  exists  is  must  reside  in  the  main  .TES  source  file,  however  the  rest  of  the
function_declarations can optionally reside in other .FUN source files.

Below is a small program which calls two functions which are declared after the main…endmain
section.      This program also has an onsignal_declaration and another declaration_block:,

main

    my_function1("hello");

    my_function2("world");

endmain



p23

© Zentel Telecom Ltd, 2009

// *** The function block starts here....

func function1(str)

    applog(str);

endfunc

func function2(str)

    applog(str);

endfunc

int a,b;

onsignal

   a=1;

   b=1;

   applog("We have received a signal");

   restart;

endonsignal

As mentioned,  functions can be declared in a separate source file (or in a TEL library file).       
The source file that contains the function declaration should have the same name as the function
with a “.fun” extension.      For example a function called MYfunction() would need to reside in a
file called myfunction.fun.    Unfortunately windows file names are not case sensitive so it is not
possible to declare two different functions like ABC() and abc() in two separate .FUN files and be
able  to  distinguish  between  them using  the  file  name.       For  this  reason  it  is  advisable  not  to
distinguish between function names by character case alone (i.e. give all functions a unique name),
or otherwise include these functions in the main (.TES) source file.

Multiple functions can be declared within a single .FUN file but only the function that has the same
name as the .FUN file can be called from another source file (all other functions can only be called
from within that particular .FUN file).

Functions can also be combined into a library file (with extension .TEL) using the MKTEL.EXE
utility  (See  Telecom Engine  Compiler,  and  Telecom Engine  Utility  programs),  and  these  can  be
linked into the application by providing the name of the TEL file using the –L option of the TCL
compiler (See Telecom Engine Compiler).

-o-

Statement Block

Statement Block Definition
The statement_block can consist of zero or more statements of the following types:

[declaration_block]
[empty_statement]   
[expression_statement]
[goto_statement]
[jump_statement]



p24

© Zentel Telecom Ltd, 2009

[label_statement]
[return_statement]
[restart_statement]
[stop_statement]
[break_statement]
[continue_statement]
[while_statement]
[do_statement]
[for_statement]
[if_statement]
[switch_statement]

The syntax of the declaration_block has already been described, and the empty_statement consists
of a single semi-colon.  E.g.

func doesnothing()

   ;   // this is the empty statement that does nothing

   ;;; // here are three more all doing lots of nothing

endfunc

In the following sections are the descriptions of the other statement type listed above:

-o-

Expression Statement

Expression Statement Definition
An expression_statement consists of an expression (expr) followed by a semi-colon:

expr ; 

Where expr can be one of the following:

    rvalue
   (  expr  )
    expr  +  expr
    expr -  expr
    expr *  expr
    expr /  expr
    expr  %  expr
    '-'  expr    
    expr '&' expr
    expr == expr  
    expr  eq expr
    expr != expr 
  : expr <> expr
    expr > expr 



p25

© Zentel Telecom Ltd, 2009

    expr < expr 
    expr <= expr
    expr >= expr
    expr '?' expr ':' expr 
    expr streq expr
    expr strneq expr
    expr || expr 
    expr or expr
    expr && expr
    expr and expr
   ! expr 
   not expr
   

This is a recursive definition so might require some thinking about, but it accurately describes the
syntax of all possible combinations of expressions and defines a ‘tree’ structure where the ‘leaves’
of the trees are all rvalues.

An rvalue is a ‘right hand value’ i.e. something that can appear on the right hand side of an equals
sign such as a number, a string, a variable name,  a pointer to a variable etc.       By comparison an
lvalue is something that can appear on the left hand side of an equals sign and does not include all
things that are rvalues.   For example, a variable name is both an rvalue and a lvalue since it can
appear on either side of an equals sign:

a=b;

b=1;

etc

But it doesn’t make sense to have a string or a number on the left hand side of an equal sign:

// Makes no sense!

"abc"=a;

5=c;

The full list of valid rvalues is as follows:

<number>
<string>
indentifier
indentifier [ expr ]
-- indentifier
++ indentifier
indentifier -- 
indentifier ++                    
&  indentifier
* indentifier 
asignment_expression
function_expression

Where  <number>  is  any  signed  integer  (E.g   10,  -115,  121111111)  or  a  hexadecimal  value
preceded by 0x  (e.g.  0xff).

<string>  is  any string of  characters surrounded by double quotes (E.g. “This is  a  string”,  “100”



p26

© Zentel Telecom Ltd, 2009

etc)

identifier  is the name of a variable and identifier [ expr ] is the name of an array and the index into
the array (E.g. myarray[12],  myarray[6*2]).

-- and ++ are decrement and increment operators (see arithmetic expressions) and & and * are  the
indirection  operators  (&  -  obtain  pointer  to  a  variable,  *  -  get  the  contents  of  the  pointer  to  a
variable).

-o-

Assignment Expression
assignment_expression  is  any expression  where  a  variable  or  array is  assigned  a  value.    It  also
included assignments that  combine the assignment with an arithmetic  expression (+=,  *= etc).    
The full list of assignment expressions is as follows:

identifier = expr
* identifier = expr
identifier [expr] = expr
identifier += expr
identifier -= expr
identifier *= expr
identifier /= expr

For example:

a=5*5;    // assign variable a to 25

*b=34;    // assign contents of variable pointed to by b to 34

c+=25;    // equivalent to c=c+25;

d-=34;    // equivalent to d=d-34;

e*=25;    // equivalent to e=e*25

f/=34;    // equivalent to f=f/34;

-o-

Function Expression
A function_expression is  simply a  call  to  a  function –  passing  any arguments  as  required  by the
function (E.g.   myfunction(1,2,b,b) ).       The result of the expression is the value returned by the
function.        

Function expressions can be used anywhere in a expression where an rvalue is valid.

For example:

   a=myfunc(1,2) * yourfunc(3,2,3) - (a > compfunc(4,2));



p27

© Zentel Telecom Ltd, 2009

-o-

Example Expression statements
The following are all valid expression statements:

5;       // valid but does nothing

(5);     // valid but does nothing

3*2;     // valid but does nothing

3+(a*4); // valid but does nothing

a=5;     // assignment expression

a++;     // increment rvalue

a=myfunction(1,2,3,4); // Assignment_expression with function_call

myfunction(1,2,3,4);  // function_call

a=b=(5*4)+2*(b=3);   // Nested assignment expressions as rvalues.

a[a=b=(5*4)+2*(b=3)]=(1 and not (a*b) or c); // getting silly

More information about expressions will be given later – here we are primarily interested in the
syntax of expressions (See More On Expressions).

-o-

Goto Statement

Goto Statment Definition
The goto_statement has the following syntax:

goto identifier ;

Where indentifier is the name of a label defined in a label_statement .     This causes the program
execution to jump to the specified label which must reside within the same function_declaration or
with the main…endmain block if that is where the goto was called from.

-o-

Goto Statement Example
An example of the goto statement is shown below:

var a:10;

main

 // Here is a label statement

 top:

    // do something 

    a++;



p28

© Zentel Telecom Ltd, 2009

    

    // Here are some goto statements

    if(a == 10)

        goto bottom;

    else

        goto top;

    endif

 // Here is another label

 bottom:

endmain

Note that it is illegal to try to jump to a label defined in a different function:

main

   f();

end

func f()

 // Here is the label

 mylabel:

     g();

endfunc

func g()

     // This is illegal!

     goto mylabel;

end

It is possible however to jump from a function to a label in the main..endmain section using the
jump_statement.

-o-

Jump Statement

Jump Statement Definition
The jump statement is similar to the goto_statement and has the the following syntax:

jump identifier ;

Here the identifier is a label defined in a label_statement, but in this case the label_statement must
reside  in  the  main…endmain  block.   However  the  jump_statement  can  be  inside  any  other
function_declaration.     A  jump_statement  results in the stack being cleared so that all function
return values are lost.

-o-

Jump Statement Example



p29

© Zentel Telecom Ltd, 2009

Below is an example of a jump statement being used to jump from a function back to a label in the 
main..endmain section:

main

   // Call the function

   f();

:end_of_program

  restart;

endmain

func f()

     // call another function

     g();

end

func g()

     // Jump back to labale in main program (stack is cleared)

     jump end_of_program;

end

   

Note that is is illegal to jump to a label that is not in the main..endmain section:

main

   f()

endmain

func f()

int a;

mylabel:

     a++;

     // This is illegal!

     jump mylabel;

       

endfunc

-o-

Label Statement

Label Statement Definition
A label_statement  consists  of  a  label  identifier  followed by colon.     The  syntax definition  is  as
follows:

identifier :



p30

© Zentel Telecom Ltd, 2009

-o-

Label Statement Example
An example of a label statement is as follows:

func  f()

// This is a label statement

mylabel:

     // ..then a goto statement

    goto mylabel;

endfunc

   

Labels can be used in goto_statements and well as jump_statements

-o-

Return Statement

Return Statement Definition
The return_statement  is  used  to  return  from a  function  or  to  return  control  to  the  main  program
from an onsignal_function.     To return a value from a function the syntax is:

return expr ;

To return from onsignal or to return an empty value (“”) from a function the syntax is:

return ;

-o-

Return Statement Example
Below are some examples of the return statement:

func f()

    // This returns the result of the expression 3*2

    return 3*2;

endfunc

func g()

    // This returns the string "123"

    return "123";

endfunc



p31

© Zentel Telecom Ltd, 2009

func h()

    // This returns the empty str ""

   return;

end

Note it is not illegal to return a value from the onsignal function, but the return value will be
ignored lost when control is returned to the main program.    Therefore it is more correct to just use
a return statement without a return expression:

onsignal

    return;

endonsignal

-o-

Restart Statement

Restart Statement Definition
The restart_statement causes all variables to be cleared (set to “”) and the program is restarted (i.e.
control is returned to the top of the main…endmain block).     Other side effects may occur when
this keyword is encountered since it is equivalent to the task being killed and then restarted again
with  the  same  Task  ID (for  example  some  DLL function  libraries  carry  out  certain  actions  (like
releasing resources) when a task is killed).

The syntax of the restart statement is as follows:

restart ;

-o-

Restart Statement Example
Below is an example of the restart_statement

main

      f();

end

func f()

    int x;

   x=do_something();

   // Check for error return

   if(x < 0)

     // Carry out some action

      hangup_call();

  

     // this will clear all variables and restart the program

     restart;

   

   endif



p32

© Zentel Telecom Ltd, 2009

    ...

end

   

      

-o-

Stop Statement

Stop Statement Definition
The stop_statement causes the current task to end and the task is removed from the active list (i.e.
the task ID becomes invalid).     This has is the same effect as if the task were killed or if then end
of program is reached.       This statement may cause certain side effects in DLL function libraries
(for example certain task related resources may be released).

The syntax is:

stop ;

-o-

Stop Statement Example
Below is an example of a stop_statement:

main

    int a

   while(1)

       applog("a=",a);

       a++;

       // Stop the program when a reaches 10

       if (a==10)

           // Stop the task

           stop;

       endif

    endwhile

endmain

-o-

While Statement

While statement Definition
The  while_statement  is  one  of  the  three  loop  statements  in  the  TE  language  (along  with  the
do_statement and the for_statement ).      The syntax of the while_statement  is as follows:



p33

© Zentel Telecom Ltd, 2009

while (expr)
    statement_block
endwhile

The statements  in  the  statement_block  will  be  repeated continuously while  the  expression  (expr)
evaluates to a non-zero value.        This expression expr is known as the conditional expression for
the loop and would usually be a logical expression 

-o-

While Statement Example
Below is an example of a simple while_statement

// This will loop ten times

i=0;

while(i < 10)

     applog("We’re still in the loop since i=",i);

     i++;

endwhile

However any expr can be used – the loop will continue until the expression evaluates to 0 (zero):   
  

// This will loop forever

while(1)

     applog("Looping forever");

endwhile

Similarly the following will result in an infinite loop and using assignment expressions like this is
often the cause of bugs where in fact the comparison_expression was meant.

// a is assigned the value 10 conditional expression, thus 10 is the result of this expression

// so this will loop forever

a=0;

while(a=10)

    applog("Looping forever");

endwhile

-o-

Do Statement

Do Statement Definition
The  do_statement  is  similar  to  the   while_statement  except  that  the  conditional  expression  is
carried  out  at  the  end  of  the  loop,  guaranteeing  that  the  loop  will  excecute  the  main
statement_block at least once (whereas for a while loop, if the expression evaluates to zero then the
loop  may  not  execute  any  of  the  statements  in  the  statement_block).     The  sytax  of  the
do_statement is as follows:



p34

© Zentel Telecom Ltd, 2009

do
    statement_block 
until ( expr ) ;

-o-

Do Statement Example
Below  is  an  example  of  a  simple  do_statement  -  note  that  the  statement_block  will  always  be
excecuted at least once in a do_statement since the conditional expression is always checked at the
end of the loop:

// The do loop will always execute its statement_block at least once

i=1;

// this is the do statement

do

   applog("You should see at least one of these messages..");

until(i==1) ;

-o-

For statement

For Statement Definition
The for_statement is similar to a while_statement except that a comma separated list of expressions
are allowed for initialiation of the loop variables (start_expr_list) and another comma separated list
of expressions which are excecuted at the end of each loop iteration (the end_expr_list).       The
syntax of the for loop is as follows:

for ( {start_expr_list } ; { expr }; { end_expr_list })
     statement_block
endfor

The start_expr_list is a comma separated list of zero or more expressions that are evaluated before
the  first  iteration  of  the  loop,  and  the  end_expr_list  is  a  comma  separated  list  of  zero  or  more
expressions that are evaluated at the end of each iteration of the loop.     The sytax definition for 
start_expr_list and  end_expr_list is as follows:

expr {, expr {,...}}

The start_expr_list is usually used to initialise some variables that are tested in the conditional
expression of the loop, and the end_expr_list is usually used to increment or decrement these
variables so the loop only executes a certain number of times.

The for_statement is similar to the  while_statement in that the  statement_block will continue to be
executed until the the conditional expression evaluates to 0 (zero) .

However, notice from the for_statement definition that the start_expr_list, conditional expression (



p35

© Zentel Telecom Ltd, 2009

expr)  and  end_expr_list  are  all  optional.    If  the  conditional  expression   is  left  blank  in  a
for_statement then this always equates to true.      For example the following is perfectly valid and
creates an infinite loop:

for(;;)

   applog("Looping to infinity and beyond");

endfor

This is not the same for a while_statement or do_statement.    In those loops it is illegal to have a
blank conditional expression.

// This is illegal!

while()

   do_something();

endwhile

// This is illegal!

do

   something();

until();

-o-

For Statement Example
A  for_statement  it  is  usually  used  to  iterate  over  a  range  of  values  where  the  start_expr_list  to
initialises some variables that are then checked in the conditional expression.   The end_expr_list is
evaluated  at  the  end  of  each  iteration  of  the  loop  and  usually  increments  or  decrements  the
variables that are checked in the conditional expression.

For example:

myarray[0..9];

// Loop from i=0 through to i=9 setting all elements of array to -1

for(i=0;i<10;i++)

    // Set element i of array to -1

    myarray[i]=-1;

endfor

// i will be equal to 10 at this point in the code..

...

Here’s another example where the start_expr_list contains two expressions (separated by comma)
but there is no expression in the end_expr_list

// start and end expressions can have multiple expressions or none at all...

for(i=0,j=10; i <= 100; )

      applog("i=",i," j=",j);

      j++;  

      i=i+j;     // This could have gone into the end_expr_list

endfor

If the conditional expression  of a  for_statement is  left  blank then the conditional expression  will
always equated to true so the loop will loop indefinitely.  For example:



p36

© Zentel Telecom Ltd, 2009

// this will loop forever

for(i=0;;i++)

    applog("i=",i);

endfor

Note than this is special syntax for the for_statement only, empty conditional expressions  are not
allowed in while_statements or do_statements.

-o-

Break Statement

Break Statement Definition
The  break_statement  causes  a  loop  to  exit  immediately  (i.e.  a  jump  is  made  to  the  statement
immediately after the endwhile, endfor or until(expr);

The syntax of the  break_statement is as follows:

break ;

-o-

Break Statement Example
The break statement is used to break out of a loop before the conditional expression is met. 

For example:

while(i < 10)

    if(i == 5)

        // Break prematurely from the loop

        break;

    endif

endwhile

Here's an example ising the CXACULAB.DLL function library for waiting for an inbound call to
be detected:

// Loop indefinitely

for(;;)

    x=CCwait(port,chan,0);

    if(x==CS_INCOMING_CALL_DETECTED)

       applog("Received incoming call on port=",port," chan=",chan);

       // break from the loop

       break;

    else

       applog("Unexpected event x=",x, " whilst waiting for incoming call");

    endif

endfor  



p37

© Zentel Telecom Ltd, 2009

-o-

Continue Statement

Continue Statement Definition
The continue_statement causes the rest of the statements inside the loop to be skipped and the
program jumps to the condition which decides whether to repeat the loop. In the case of a for-loop,
the end_expr_list is executed before the conditional expression is tested.    The syntax is:

continue ; 

-o-

Continue Statement Example
An example of the continue statement is shown below:

// Loop until the afternoon (The sys_time() function returns HHMMSS)

while(1)

    if(sys_time() < 120000)

        // Jump to the top of the loop

        continue;

    else

        break;

    endif

endwhile

-o-

If statement

If Statement Definitions
The if_statement allows code to be executed only if a certain condition holds true.  The syntax of
the if_statement is as follows:

if ( expr ) 
     statement_block
{ else
   statement_block  }
endif

If the conditional expression, expr, evaluates to a non-zero value then the statement_block after the
 if  is  executed.       If  the  expr  evaluates  to  zero  then  if  there  is  an  else  statement  then  the
statement_block after the else is executed otherwise execution jumps to the endif statement.



p38

© Zentel Telecom Ltd, 2009

-o-

If Statement Example
An if_statement can either have an else clause or just have the if clause without an else.     Both of
the following statements are valid:

if(i == 10)

    applog("Woohoo! i equals 10");

else

    applog("Doh! i does not equal 10");

endif

if(i == 10)

    applog("Woohoo! i equals 10");

endif

Any expression can be used for the conditional expression and the statement_block for the if clause
will be executed if this expression evaluates to a non zero value.   For example all of the following
are valid:

// this will alway be true

if(1)

   applog("You will always see this")

endif

// this will always be true unless a==1

if(a-1)

   applog("If you see this then a isn't 1");

endif

// this will always be true - but might be a BUG!

if(a=3)

   applog("You will always see this - but did you want to?")

endif

The  last  example  shows  that  an  assignment  expression  is  a  prefectly  valid  expression  for  a
conditional  statement  but  is  also  a  common  cause  of  bugs  in  applications  since  what  is  usually
meant is:

// This is what was probably meant.

if(a==3)

   applog("if you see this then a must be 3");

endif

To prevent this  kind of  bug it  might be better to  use the  TE style comparison operator  eq.    For
example:

if(a eq 3)

   applog("if you see this then a must be 3");



p39

© Zentel Telecom Ltd, 2009

endif

(see More on Operators)

-o-

Switch Statement

Switch Statement Definition
A switch statement allows a TE program to make a decision based on the value of an expression.
Several  choices  are  specified,  when  a  matching  choice  is  found,  the  following  statements  are
executed.     The syntax of the switch statement is as follows:

switch ( expr )
    { case expr :  statement_block
    { case expr :    statement_block  … 
    { default :   statement_block  } } }
endswitch

After the switch statement there are zero or more case statements followed by an optional default
statement.        The way it works is that the value of the switch expr is evaluated then whichever
case expr matches this value has its  statement_block executed then control jumps to the endswitch
statement.    If none of the case expr  values match then the default statement_block is executed if
one is present. 

-o-

Switch Statement Example
Below is an example of a simple switch statement which is checking for which DTMF digits have
been entered: 

// Switch example using Aculab speech functions from CXACUDSP.DLL

switch (Digit)

        case "1":

                SMplay(vox_chan, "one.vox");

        case "2":

                SMplay(line, "two.vox");

        case "#":

                SMplay(line, "pound.vox");

        default:

                SMplay(line, "invalid.vox");

endswitch

        
There are two important things to note about the switch statement:

a) The comparison between the switch expr  and the case expr values is carried out using the streq
comparator NOT the == (or eq) comparator.      This means that the values are compared as strings
not as integer values.      So in the following example the second case will be carried out NOT the
first:

switch ("01")



p40

© Zentel Telecom Ltd, 2009

    // This is actually doing a streq between "1" and "01"

    case 1:

         applog("This won’t be executed");

    case "01":

         applog("This will be executed");

endswitch 

b) Unlike in the ‘C’ programming language you do not need to include a break_statement between
each case statement.      In the TE language the case statements do NOT drop through – after a case
has been matched and the statement_block for that case has started execution, as soon as the next
case  statement is encountered  the program will  jump to the endswitch  statement.      In ‘C’ if  a
break_statement is not encountered then the statement_block for the next case will be executed as
well.       If  you  want  to  ‘drop  through’  in  the  TE  language  then  you  should  explicitly  use  a
goto_statement to do so.

-o-

More on Expressions

Expression Types
There are various types of expressions which can be categorised as follows:

a) Arithmetic expressions   -  expressions that are use arithmetic operators.
b) Logical expressions  - expressions that evaluate to true ("1") or false ("0").
c) Assignment expressions - expression that assign a value to a variable.
d) Constant expressions - expressions that have a contant value.
e) Function expressions - function calls as expressions.

These are described in more detail in the following sections.

-o-

Arithmetic Expressions
Arithmetic expressions include the following types:

Expression Result
exprA + exprB Add exprA to exprB
exprA – exprB   
    

Subtract exprB from exprA

exprA * exprB   
    

Mulitply exprA by exprB

exprA / exprB Divide exprA by exprB
exprA % exprB Modulo  division  of  exprA  by  exprB  (i.e  the

remainder)



p41

© Zentel Telecom Ltd, 2009

- exprA Change the sign of exprA

Some examples of arithmetic expressions are as follows:

1+2

a-2

4/a+b

etc.

However the above definition leaves some ambiguity about the order of evaluation.   For example
in the following expression is ambiguous: 

1-2+4

It is not clear whether this should be evaluated as (1-2)+4=3 or as 1-(2+4)=-5.     To clear up this
ambiguity then all mathematical operators are given a level of precedence (i.e. a definition of the
order  of  evaluation  of  operators).    The  order  of  precedence  for  mathematical  operators  is  as
follows (strongest first):

Operator Associativity Name
- Left (unary) Change sign
+ - Left (binary) Add and Subtract
* / % Left (binary) Mulitply,  divide  and

modulo

The  operators  that  appear  on  the  same  line  have  equal  precedence  to  each  other  and  it  is  their
associativity that defines the order that they are evaluated.  Left associativity means that  they are
evaluated  in  order  from  left  to  right  in  the  expression  (right  associativity  means  that  they  are
evaluated from right to left in the expression (non of the arithmetic operators have this)).

This clears up the ambiguity of expressions like:

1-2+4*3

since the precedence and associativity defines that this will be evaluated as

(1-2)+(4*3)

The higher precedence of the multiply operator forces the (4*3) to be carried out first and the left
associativity forces the (1-2) to be carried out before the addition.

However it is often better to use brackets to explicitly define the evaluation order than to try and
remember the precedence and associativity of all the operators.

The result of an arithmetic expression is always a signed 32 bit integer value.    Provision has been
made to allow for 64 bit integer expressions in the future (hence the fact that 21 bytes is set aside
for an int variable type).

32 bit  signed integers range from -2147483648 to  2147483647 so  no value higher or  lower  than
these two limits can be returned from an arithmetic expression.      The values will ‘wrap around’



p42

© Zentel Telecom Ltd, 2009

so for example if you add 1 to 2147483647 you will get -2147483648 and if you subtract 1 from
-2147483648 you will get 2147483647.

The result of an arithmetic expression is always evaluated to a null terminated ASCII string so it is
important to make sure that a variable is long enough to store the result.

For example in the following code:

var a:2;

main

   a=99+1;

end

Since a is only two bytes long and the expression 99+1 evaluates to a three character string “100”
then the result will be truncated to “10” when it is stored in the variable a.        Care should always
be taken that data is not lost when assigning values or strings to variables if the variable is not long
enough to hold the value and it is advisable to assign at least 22 bytes for any variable that will hold
a numeric value (or define it as type int).

Note that if a non-numeric string is used in an arithmetic expression the string will be converted to
a numeric value using the following rules:

a) Trailing spaces are ignored.
b)  Conversion  starts  from  the  first  numeric  character  (or  sign  (+  or  -))  and  stops  when  the  first
non-numeric character is encounter.

Below are some examples of what each of the following strings is evaluated to:

String Evaluated to
“        12” 12
“12   13” 12
“12abc” 12
“    -12a” -12
“abc” 0

Notice  that  any string  whose  first  character  (after  any  trailing  spaces)  is  a  non-numeric  value  is
always evaluated as zero.        As well as for arithmetic expressions these conversion are always
carried out before assigning a value to a int type variable.

-o-

Logical Expressions
Logical  expressions  are  those  expressions  that  give  a  logical  (or  Boolean)  result  –  i.e.  TRUE or
FALSE where TRUE is represented as “1” and false is represented as “0”.

Logical operators include the and, or, not statements (and their symbolic equivalents: &&, ||, !) as
well as the comparison operators (greater than, less than, greater than or equal to, less than or equal
to , equals, string equals, string not equal).



p43

© Zentel Telecom Ltd, 2009

The  language  allows  for  ‘C’  style  logical  and  comparison  symbols  as  well  as  additional  TE
language equivalents where appropriate.     It is up to the programmer whether to use the ‘C’ style
symbols or  to  adopt  the  TE language versions depending upon personal  preference.      The  ‘C’
style  symbols  were  included  in  the  language since  these  symbols  are  well  known  and  used  by  a
large  number  of  programmers  and  it  is  often  difficult  to  remember  to  swap  to  the  TE  language
operators causing an annoying number of syntax errors to be introduced to the code by the absent
minded programmer (i.e. the author).        

The list of Logical and comparison operators is as follows:

‘
‘C’ style operator TE  Language

equivalent
Description

&& and Logical AND
|| or Logical OR
! not Logical NOT
> > Greater Than
>= >= Greater or equal
< < Less Than
<= <=         Less or equal
== eq Equals
!= <> Not equal
n/a streq String equals
n/a strneq String not equal

The ‘C’ style operators may be useful for ‘C’ programmers who are used to using these, but there
are certain disadvantages.    The first is that the symbolic nature of all the symbols makes the code
more difficult to read and ends up looking like some kind of alien hyroglyphics:

if((!a && !b) || c==d)

is harder to read than:

if((not a and not b) or c eq d)

Also  the  ‘C’  style  equals  operator  (==)  is  easy  to  mix  up  with  the  assignment  operator  (=).   
Statements like the following are common causes of bugs in C programs:

// This conditional expression is always true 

// This is a bug if ‘if(a==1)’ was what was meant..

if(a=1)  ...

The use of eq  rather than == reduces the chance of  introducing this  kind of  bug.   Therefore for
beginners  or  non  C  programmers  it  might  be  advisable  to  use  the  TE  language  versions  in
preference to the ‘C’ style versions if possible, but it is purely down to programmer preference.

Also  notice  that  in  the  TE  language  there  are  two  additional  comparison  operators:  streq  and
strneq.       All  the  other  comparison  operators  carry  out  a  numeric  comparison  of  the  terms,



p44

© Zentel Telecom Ltd, 2009

whereas streq (string equals) and strneq (string not equal) carry out a string comparison.       There
is a subtle difference between being equal as a number and equal as a string. A string is converted
to a number by taking all the characters up to the first non-digit. So, "123", "0123", and "123ABC"
are all equal numerically but are different when compared as strings.

This is especially important to remember when making checking for DTMF input using the pound
or star keys:

"*" eq "*"                 // This gives True

"#" eq "*"                 // This also gives True!

because  we  are  comparing  zero  with  zero.  Be  sure  to  use  streq,  not  eq,  when  comparing
non-numeric values.

Logical conditions can include arithmetic operators and parentheses just like other expressions. In
fact, there is no distinction between logical conditions and other expressions except to convert the
final result to a logical value (“1” or “0”) rather than a numerical value.     The following are all
valid expressions:

a=123 + (5 > 3);      // a will be set to 124 since (5 > 3) evaluates to TRUE ("1")

a=1000*(not 234)   // a will be set to 0 since (not 234) evaluates to FALSE ("0")

However  logical  conditions  are  normally  used  in  if-statements  and  to  control  for,  while  and
do..until loops.

-o-

Assignment Expressions
Assignment  expressions  assign  value  to  a  variable,  an  array  or  the  contents  of  a  pointer  to  a
variable.   The simplest type of assignment expression is as follows:

a=1

where the variable on the left hand side is set to be equal to the value of the expression on the right
hand side (in this case 1).      This expression can be made into a statement by adding a semi-colon
to the end (see rules of syntax above):

a=1;

or it can by part of a larger expression

if(b eq (a=1)) ...

Assignment  expressions  are  examples  of  expressions  that  have  ‘side  effects’  since  they  alter  the
value  of  a  variable.     Some  assignment  operators  cause  the  side  effect  to  happen  before  the
expression  is  evaluated  and  some  cause  the  side  effect  to  happen  after  the  expression  has  been
evaluated.

Below is the set of assignment expressions supported by the TE language:

Expression Effect Side Effect



p45

© Zentel Telecom Ltd, 2009

A = B Put the value of B into
A.

After

A += B A = A + B After
A -= B A = A – B After
A /= B A = A / B After
A *= B        A = A * B After
A++ A = A + 1 Before
++A A = A + 1 After
A-- A = A – 1         Before
--A A = A – 1         After

Here’s  some examples  to  show the  difference between those  side  effects  that  happen before  and
after the expression has been evaluated.

a=1;

b=++a;  // b will be set to 2

In the above example b will be set to 2 since the ++a  happens before the expression is evaluated
(so a is incremented then assigned to b)

a=1;

b=a++;    // b will be set to 1

Here b will be set to 1 since the a++ happens after the assignment expression is completed.

-o-

Constant Expressions
There are four types of constant values that can be used in the source code of the TE language:

Decimal Integer constants
Hexadecimal Integer constants
String constants
Predefined constant identifiers.

Decimal integers can be used wherever a rvalue is valid (E.g. in expressions and assignments.    
These numbers may optionally be prefixed with a + or – sign, for example:

a=123;

b=+47+12;

c=-123456576;

Decimal number constants are converted to null terminated ASCII strings before they are stored or
used by the TE language.

Similarly hexadecimal integers can be used wherever a rvalue is valid and must be prefixed with
the characters 0x,  for example:



p46

© Zentel Telecom Ltd, 2009

a=0xff;

b=0xEE7;

Either  upper  or  lower  case letters  can  be  used  in  the  hexadecimal  number  and  the  compiler  will
convert the values to a decimal numeric string before using or storing the value.      Note that this is
a compile time conversion and hexadecimal string  values will  NOT be converted at run-time.    
Therefore the following statements are not valid if you are assuming a will evaluate to decimal 15:

a= "0xf"       // Compiler will not convert this as it’s a string

b=a+1;          // This evaluates to 1 since "0xf" evaluates to 0

Since  strings  are  evaluated  as  decimal  values  “0xf”  will  be  evaluated  as  0  since  the  first
non-numeric character (‘x’ in this case) stops the conversion.

The difference between the following two statements should be understood:

a=0xf;      // Compiler will convert to the decimal string "15"

b= "0xf";  // Compiler will store the string in quotes ‘as is’ 

            //i.e "0xf" will be stored and any arithmetic operation

            // or assignment to int type at run-time will 

            // evaluate this to "0"

string constants must be surrounded by double quotes and are stored in var types ‘as is’ without
conversion.    Here is an example of a string:

“this is a string”

Note however that  if  the  var  type is  not  long enough to  hold  the  string then it  will  be  truncated
before storing in the variable.     For int type variables or in arithmetic expressions the string will
be converted to a numeric string before being stored or used.

Within  a  string  a  backslash  character  has  special  meaning  and  is  known  as  an  escape  character
since  it  allows  non-printable  an  other  special  characters  to  be  included  in  the  string.      The
following esccape sequences are interpreted by the compiler as follows:

Sequence Puts this single character into the stored string
\\ Single backwards character
\q Double-quote "
\r Carriage-return (hex 0A)
\n New-line (hex 0D)
\t Tab (hex 09)
\xx Byte  with  hex  value  xx,  eg  \09  would  have  the  same  effect  as  \t.  It  is

illegal to use `00.

Predefined constant identifiers are constant that have been defined using the const declaration in a
 declaration_block.        For example, if the following constants will all evaluate to the same string
“255” and can be used anywhere that an rvalue is valid.

// All three of these constants will evaluate to the same sting: “255”

const a=255;

const b=0xff;

const c= "255";



p47

© Zentel Telecom Ltd, 2009

...

total=a+b+c;     // = 255+255+255

-o-

Function Expressions
A function expression is where a function is called and the return value of the function is used as
the result of the expression.

For example, if a function is defined that returns the product of two numbers:

func product(a,b)

    return (a*b)

end

Then this function can be used in an expression wherever an rvalue is valid:

a=product(2,3);    // a is set to 6

b=product(2,2)*product(product(2,2),2);    // b is set to 32

A function expression is also an expression that can be said to have ‘side effects’ since it can alter
the values of variables.          

-o-

More on Operators

TE  Language Operators

Apart from the logical, assignment and arithmetic operators there are a number of other operators
used by the TE language.    Below is the full list of TE operators showing their precedence (highest
first) and their associativity:

Operators Associativity
++ -- Left
- & * Left (unary)
& Left (binary)
* / Left (binary)
+ - Left (binary)
> < >= <= Left
== eq <> streq strneq Left
! not Left
&& and Left
|| or Left



p48

© Zentel Telecom Ltd, 2009

?: Right
= += -= *= /= Right

This set of TE language operators can be categorised into the following groups:

Arithmetic Operators
Comparison Operators
Logical Operators
Assignment Operators
Indirection Operators
Miscellaneous Operators.

The following sections describe these types of operators in more detail.

-o-

Arithmetic Operators
Arithmetic Operators:

Expression Result
A + B Add A and B.
A – B Subtract B from A.
A / B Divide A by B and produce an integer by dropping

all decimals (for example: 9/4 gives 2).
A * B Multiply A and B.
-A Change the sign of A (same result as 0-A).

-o-

Comparison Operators
Comparison Operators:

Expression Result
A > B TRUE if A greater than B.
A >= B TRUE If A greater than or equal to B.
A < B TRUE if A less than B.
A <= B TRUE if A less than or equal to B.
A eq B TRUE if A equal as number to B.
A <> B TRUE if A not equal as number to B.
A streq B TRUE  if  A  is  same  string  as  B.  See  also  String

Values.



p49

© Zentel Telecom Ltd, 2009

A strneq B TRUE if  A  is  not  the  same  string  as  B.  See  also
String Values.

-o-

Logical Operators
Logical Operators:

Expression Result
A and B TRUE if A is TRUE and B is TRUE.
A && B TRUE if A is TRUE and B is TRUE (C style).
A or B TRUE if either A or B or both are TRUE.
A || B TRUE if either A or B or both are TRUE (C style).
not A TRUE if A is FALSE; FALSE is A is TRUE.
! A TRUE if  A  is  FALSE;  FALSE is  A  is  TRUE  (C

style)

-o-

Assignment Operators
Assignment Operators:

Expression Result
A = B Value of B is assigned to A.
A += B Same as A = A + B
A -= B        Same as A = A - B
A *= B        Same as A = A * B
A /= B Same as A = A / B
A++ A + 1 (result is A before adding 1)
++A A + 1 (result is A after adding 1)
A-- A - 1 (result is A before subtracting 1)
--A A - 1 (result is A after subtracting 1)

-o-

Indirection Operators
Indirection Operators:

Expression Result
&A Pointer to variable A.



p50

© Zentel Telecom Ltd, 2009

*A The variable pointed to by A

C programmers will be familiar with the idea of indirection from the unary & and * operators. The
TE  language  provides  a  similar  mechanism  whereby  the  unary  &  operator  can  be  applied  to  a
variable name and it returns a pointer to the variable (actually it returns the offset of the variable in
the internal variable table assigned by the Telecom Engine).

Once a pointer to a variable has been obtained using the & operator then the unary * operator can
then be used to access the variable the this pointer refers to.

For example,

int a, b, c;

main

    b=123;    // assign a value to b

    a = &b;   // a holds the pointer to variable b 

    c=*a;    // c is assigned the value of b

    *a=10;   // b is set to 10 

endmain

In the above program the variable b is assigned the value 123.     Then the variable a is set to hold a
pointer to b.     This will actually be the integer offset into the internal variable table held by the
Telecom Engine, so in the above case this will be 1 (a would  be at offset 0, b at 1, c at 2).     Don’t
rely on these offset values though since the way variables are stored in the Telecom Engine may
change in the future.

The next line sets c to the contents of the variable pointed to by a  which in this case is the contents
of variable b – i.e. 123.

Finally the contents of the variable pointed to by a  is set to the value 10,  so in fact variable b  is
now set to 10.

The unary * operation is called "dereferencing".

The unary * operator may only be applied to variables or function arguments. The expression (*2),
 though is illegal -- it does not mean "variable number two".

The main use this  mechanism is  to  allow a function to alter  the value of  a  variable passed as  an
argument to a function. In the TE language function arguments are passed "by value".   This means
that when a function is called, each function argument is evaluated to a string, and the string values
copied to an area of memory that the function can access.    The function therefore only has a copy
of the values passed to it and can’t alter the values held in the original variables.

For example, in the following program:

var x:3;

main

    x = "ABC";

    f(x);

    applog("x=",x);

endmain



p51

© Zentel Telecom Ltd, 2009

func f(argument)

    argument="ZYX";   // this is illegal

endfunc

This  would  result  in  a  compiler  error  since  the  function  is  attempting  to  change  the  value  of  a
function  argument  which  is  in  fact  just  a  copy  of  the  original  string  that  is  now  stored  on  the
program stack.      If the compiler allowed this value to be changed then it could result in the stack
being overwritten if a longer string was assigned.   In fact it doesn’t usually make sense to try and
change the value of arguments like this so it has been made illegal in the TE language.      

What  is  usually  required  is  for  the  original  value  of  the  variable  passed  to  the  function  to  be
changed  and  this  is  what  the  indirection  operators  are  for.      Instead  of  passing  a  copy  of  the
variable to the function, a pointer to the variable can be passed instead.   For example:

main

    var x:20;

    

    x= "ABC"

    f(&x);     // pass a pointer to the variable x

    applog("x=",x);     // x has now been changed by f() 

endmain

func f(arg)

    *arg = "ZYX";    // Use the dereference operator to change the variable pointed to by arg

endfunc

This program will assign the string "ZYX" to variable x, and write this string to the screen.

Note that the unary & operator cannot be applied to function arguments. The following is illegal:

func f(a)

    g(&a);        // Illegal

endfunc

However,  variable  numbers  may  (like  any  other  string  value)  be  passed  through  any  number  of
levels of function calls:

main

var x:50;

    f(&x);

    applog("x=",x); // value of x changed by function g()

endmain

func f(af)

    g(af);

endfunc

func g(ag)

   *ag = "New value";

endfunc

Caution needs to be used when using the indirection operators.   The Telecom Engine provides no
protection from meaningless code like:

x = 36;



p52

© Zentel Telecom Ltd, 2009

*x = "ABC";

which would unexpectedly over-write the variable at offset 36 in the TE variable table. 

-o-

Miscellaneous Operators
Miscellaneous Operators:

Expression Result
A & B         String  made  by  adding  B  to  the  end  of  A

(string concatenation). 
A ? B : C B if A is TRUE; C if A is FALSE.

-o-

Ambiguous Operators
It can be seen from the above tables that the three symbols

        & - *

can each stand for two different operators, depending on how the symbol is used.   One usage is as
a binary operator, where two different values are combined into one. The other usage is as a unary
operator, where a single value is changed to a new value. 

The context that the operator is used in (unary or binary) defines the meaning of these symbols in
each situation, thus clearing up any ambiguity.

The meaning of these symbols in each situation is:

Symbol Example Meaning
Unary - -A Change sign of A
Unary & &A Pointer to variable A
Unary * *A The variable pointed to by A
Binary - A – B Subtract B from A
Binary * A * B Multiply A and B
Binary & A & B Concatenate strings A and B

-o-

String Concatenation Operator
There is a special operator that can be used with strings, which is the concatenation operator.     
This is the & symbol which if used is used to join two or more strings together:



p53

© Zentel Telecom Ltd, 2009

a="1234";

b="567";

c=a & b & "89";    // c becomes "123456789"

The result above is that the variable c will be set to “123456789” which is a concatenation of the
strings stored in variable a and b and the string constant “89”.

-o-

The Conditional Expression Operator
The Conditional Expression uses the ? and : operators and takes the form:

A ? B : C

Which can be read as:  If A is TRUE then the expression takes the value B else it take the value C.

For example:

b=(a<0)? -a: a;    // Sets b to the positive value (modulus) of a

b=(a > 255)?255:a; // set b to the value of a up to the limit 255

-o-

More on Functions

More on Functions
There are two types of functions that can be called from TE programs:

a) TE language functions (function declared in a func..endfunc block).
b) External DLL functions.

There are very few differences between calling these two types of function and the calling syntax is
the same.    Both type of functions return string values.       However there are a few differences
that should be noted:

i) Some DLL functions can take a variable number of parameters whereas TE functions can only
take a fixed number of parameters.
ii) DLL functions can result in the calling task becoming suspended (i.e the calling task will block
until the calling libary wakes the task up at which point the function will return).
iii)  A  maximum  of  32  arguments  can  be  passed  to  a  DLL function,  whereas  for  a  TE  language
function there is no limit to the number of arguments that can be passed to a function (except for a
limit imposed by the stack depth or stack size which might be exceeded if not big enough to handle
all of the function parameters).   

For  example  the  CXTERMX.DLL library  has  functions  for  displaying information  to  a  terminal
console and for accepting input from the keyboard.      Some of these functions accept a variable
number  of  parameters.     For  example  the  applog()  function  which  displays  a  message  to  the



p54

© Zentel Telecom Ltd, 2009

terminal screen (and writes the message to the application log) can take any number of parameters
between 1  and  16.      Each  of  the  parameters  passed  is  concatenated  together  to  make  the  final
message string.  For example the following two calls would display the same message:

applog("This is a string");

applog("This"," is ","a string");

This allows the values of  variable to be easily displayed:

a=3;

b=34;

applog("a=",a," b=",b);

The kb_get()  function provided by the  CXTERMX.DLL library is  an  example  of  a  function  that
causes the calling task to be suspended.         A call to kb_get() will not return control to the task
until a key has been pressed on the keyboard (i.e. the function will block).     Of course this only
blocks  the  calling  task,  all  other  tasks  running  on  the  Telecom  Engine  will  continue  to  process
commands( unless they are also in blocking functions):

var ch:1;

ch=kb_get();    // this will ‘block’ until a key is pressed

applog("Got key=",ch);

As mentioned in the discussion about indirection operators, arguments are passed to functions by
value which means that a copy of the original value is pushed onto the program stack which can
then  be  referenced by the  function.     It  is  illegal  to  try  and  alter  the  value  of  an  argument  to  a
function:

func f(arg)

    arg=2;    // illegal

endfunc

If you wish to alter the value of a variable inside a function then a pointer to that variable should be
passed  rather  than  the  value  itself  and  the  dereference  operator  should  then  be  used  inside  the
function.       It  is  advisable to  indicate in  the  name the  arguments of  a  function that  it  will  be  a
pointer (e.g. by prefixing ptr_ or _p_ or something similar)

main

var str:127;

   f(&str);   // Pass pointer to variable

endmain

func f(_p_arg)

    * _p_arg= "New value"

endfunc

To return from a TE language function the return_statement can be used which can take one of two
forms:

return ;



p55

© Zentel Telecom Ltd, 2009

or

return expr ;

A return on its own will return the empty string “” as the result of the function, otherwise the value
of  the  expr  will  be  returned  if  one  is  given.       If  the  endfunc  statement  is  reached  before
encountering an explicit return statement then the empty string “” will be returned by the function.

TE  language  functions  can  be  declared  inside  the  main  .TES  source  file,  or  else  they  can  be
declared  in  a  separate  .FUN  source  file  where  the  name  of  this  source  file  is  the  same  as  the
function itself.       For example a function called myfunction() would be declared in a .FUN file
called myfunction.fun.

Also  TE  language  functions  can  be  merged  into  a  TEL  library  file  and  linked  into  the  main
application by using the –L option with the TCL compiler (See TCL compiler reference).

-o-

More on Variables

More on Variables
All variables in the TE language are stored as null  terminated character strings.  Variables can be
declared with lengths up to 255 characters long:

var a:255;    // This is OK

var b:256;   // illegal.. 

In  fact  an  additional  byte  is  set  aside  by  the  Telecom  Engine  to  allow  for  the  terminating  null
character, so a var of length 255 would take up 256 bytes.

Integer type variables are also stored as character strings and the TE language sets aside 22 bytes
for each variable declared as type int (1 bytes for the sign, 20 bytes for the digits and one byte for
the null terminator).        Before assigning a value to a variable of type int the Telecom Engine will
convert the assigned string to a numeric string value.

At the start of an application all var type variables are initialised to the blank string “” and all int
type variables are initialised to 0.

The  variables  declared  in  the  declaration_block   before  the  main..endmain  section  are  global
variables that can be accessed by any function in the program (this applies to contants as well).

All  variables declared inside functions are static  variables that  can only be  accessed from within
that  particular  function.   The  fact  that  these  variables  are  static  means  that  they  will  retain  their
values between function calls.    

For example:

main



p56

© Zentel Telecom Ltd, 2009

   f();

   f();

   f();

endmain

func f()

int a;

    a++;

    applog("a=",a);

endfunc

Each time the function f() is called then the variable a is increased by one so by the third call a  will
have the value 3.          If this behaviour is not what is required then it is up to the programmer to
make sure all variables are initialised to the correct value at the top of each function.

Variables  can  be  declared  anywhere  within  a  statement_block  and  can  then  be  accessed  from
anywhere from that point on in the code to the end of the func..endfunc or main..endmain block. 
        Variables declared within  a  function cannot  have the  same name as  a  function argument,  
global variable or global constant:

int a;

main

    f("Hello");

end

func f(str)

  var a:20;   // illegal - same name as global

  var str:10;    // illegal -  same name as function argument

endfunc

Different  functions  may  declare  variables  of  the  same  name  so  long  as  they  don’t  conflict  with
another variable, argument or constant that is in scope.

-o-

More on Arrays
The  TE  language  allows  for  var  type  and  int  type  arrays  of  up  to  256  elements  long.    The
declaration of an array requires that the first and last index values be specified.   For example:

var a[1..20];

Defines an array with indexes ranging from 1 through to 20.         Any attempt to access an element
beyond this range will result in an error at runtime being written to the log.     An attempt to access
an array element out of range will result in the empty string “” being returned.

var a[1..20];

b=a[0];     // b will be set to "" and an error will appear in the error log screen.

c=a[21];     // c will be set to "" and an error will appear in the error log screen.

The maximum index range allowed in the declaration of and array is 0 through to 255.    Also the
lower index range must be less than the upper index range.  Therefore the following declarations all
illegal:



p57

© Zentel Telecom Ltd, 2009

var a[-1..20];      // Illegal: Lower index less than 0

var b[25..256];   // Illegal: Upper index greater than 255

var c[50..1];      // Illegal: Upper index range less than lower

-o-

Compiler Directives

Compiler Directives
Compiler  directives  instruct  the  compiler  to  carry  out  certain  actions  at  compile  time  and  are
meta-commands, not really part of the programming language itself.     All compiler directives start
with a $ symbol.    

The compiler directives recognised by the TCL compiler are as follows:

$include <filename>
$if ( constant_expression )  … $else … $endif

-o-

The $include Directive
The $include directive informs the compiler to include the contents of the filename into the source
code as though the text in filename was typed directly into the source.    

This  is  usually  used  for  including  files  containing  common  global  variable  and  constant
declarations associated with particular function libraries (header files).
For example if the header file MYVARS.INC contains the following declarations:

myvars.inc:
var a:10;
var b:10;
const c="123";

This could be included in a global declaration_block at the top of the program:

$include "myvars.inc"

main

   // these are decared in the header file..

   a=1;

   b=c;

endmain

   
Although the $include directive is most commonly used to include header files that declare global
variable and constants there is no reason why the $include directive can;t be used anywhere in the
code to include text from another file as though it had been typed directly into the source file.



p58

© Zentel Telecom Ltd, 2009

For example in the following program

main

      $include "stuff.txt"

endmain

The STUFF.TXT file can contain all the program statements for the application like this:

Stuff.txt

   applog("This comes from the stuff.txt file");

   applog("Hello again, world");

For header files the convention is to use the extension “.teh”  (short for Telecom Engine Header),
or if you prefer “.inc” or “.h” are other common extensions  used.    

An environment variable called INCDIR specifies a semi-colon delimited list of directories where
the compile will search for include files (See TCL Compiler Reference).

-o-

The $if Directive
The $if  (constant_expression)  directive  allows  for  conditional  compilation.      This  is  useful  for
allowing the same code to be compiled in two or more different forms (say for different hardware
implementations).    There are three types of $if statement allowed:

$if (<x> streq <y>)
$if (<x> strneq <y>)
$if (<x>)

<x> and <y> represent constant strings, integers or declared constant identifiers.     In the first two
forms a string comparison is carried out between <x> and <y> and the compiler will compile the
following code (or not) depending on the result of the comparison.   For example:

$if(HARDWARE_TYPE streq "ACULAB")

     SMplay(vox_chan, "test.vox");

$else 

   $if(HARDWARE_TYPE streq "DIALOGIC")

      dx_play(vox_chan,"test.vox");

   $else

      applog("Application compiled for unsupported hardware type=",HARDWARE_TYPE);

   $end

$endif

The  constant  identifier  HARDWARE_TYPE  is  assumed  to  be  declared  in  a  const   declaration
somewhere in scope, else specified using the –D option of the TCL compiler (See TCL compiler
reference).           In the above application only one line will get compiled depending on the value
of HARDWARE_TYPE.

The  code  in  the  lines  that  are  not  compiled  do  not  even  need  to  conform  completely  to  the  TE
language syntax, however the text is still parsed token by token and so there are some restrictions as
to  what  can  be  contained  in  the  non-compiled  side  of  the  $if..$else..$endif  statement.       Most



p59

© Zentel Telecom Ltd, 2009

notably a string token cannot span more than one line of the source code.

For example the following will compile successfully and the the compiler will simply excluding all
text for the $else side of the following code:

const NO_NONSENSE=  "1";

$if (NO_NONSENSE streq "1")

      // This code must be valid since it will get compiled

     applog("Not nonsense");

$else

     blah blah this doesn’t need to make any sense since it will not get compiled!

     akjsd;lksad;kds;

     ;laksd;lask;laskd’

     No syntax errors to be seen anywhere..

     but don’t change NO_NONSENSE  to 2 or the compiler will explode

$endif

However in the following excerpt a string in the $else side of the $if directive spans more than one
line and will result in a syntax error:

const NO_NONSENSE=  "1";

$if (NO_NONSENSE streq "1")

      // This code must be valid since it will get compiled

     applog("Not nonsense");

$else

     " This string will cause the compiler to fail with 

a sytax error because a string token cannot span

more than one line of the source code"

$endif

The final form of the $if statement is $if(<x>).       This requires that a constant name be given and
the  compiler  simply checks if  this  name has  been defined.    Even  if  the  value  of  the  constant  is
blank or zero this statement will hold true.   For example:

const X_IS_DEFINED = "";

$if(X_IS_DEFINED)

    applog("X_IS_DEFINED is defined");

$endif

The applog statement would get compiled since X_IS_DEFINED is  defined.      The same effect
could be achieved by compiling with the –D option in the TCL compiler.

$if …$else…$endif  directives can be nested to any level..

-o-

The TE Compiler

Introduction



p60

© Zentel Telecom Ltd, 2009

The Telecom Engine Compiler (TCL.EXE) is a command line compiler that  compiles TE source
code files (.TES extension) into the TE byte-code (.TEX extension), which can then be executed by
the TE Run-Time Engine.

To use the compiler it is necessary to open a command prompt (DOS box) and then to change to
the  directory where  the  source  code  resides.        Make  sure  that  the  directories  that  contain  the
compiler executable and any required DLLs (E.g. Telecom Engine Library DLLs) are all specified
in the PATH environment variable  (Control Panel->System->Advanced->Environment Variables).

To compile a source code file, the command line format is as follows:

TCL [opt i ons] SourceFi l e[. TES]

For example:

TCL Mysource

If  the  source  code  file  compiles  sucessfully,  without  errors,  then  Mysource.TEX will  be  created
which contains the byte-code for the program.

If  any  errors  are  encountered  when  compiling  then  these  errors  will  be  printed  to  the  console
window in RED (see below):

-o-

Compiler Options
All compiler options should be specified one after another (separated by spaces)  and preceded with
a '-' character.         For example:

TCL - u - f  - s120,2048 MyPr og

Some compiler options are specified on their own without additional arguments or values (such as



p61

© Zentel Telecom Ltd, 2009

the -u and -f options above),  whereas others require one or more additional arguments/values to
complete the option specification (such as the -s120,2048 option shown above).

Below is a description of all of the command line options that can be specified with the Telecom
Engine Compiler (TCL.EXE):

Optio
n

Additional Arguments Description.

-u None Prevent 'Variable not used' Warnings.
-f None Prevent Debug information being written to TEX file.
-v <level> Specify verbose mode (<level>=0..9).
-L <Libname[.TEL]> Specify a TE libary file to search for functions to compile and link

to.
-r <DLL1[;DLL2[;DLL3..

.]]]>
Specify one or more TE DLL or DEF files to load.

-s <Stack Depth,Stack
Size>

Specify the stack depth and stack size for the program

-d <name> Define a constant and set its value to 1
-d <name=value> Define a constant and set its value to <value>
-e None Output all errors to TCL.ERR file.
-n None Don't load the default TCL.DEF file.
-c <flag> Set flag to 0 to disallow 'C' style operators (&&,||,==,!,!=), set to 1

to allow these
-z <definition file name> Create library definition file from loaded DLLs and DEF files.

Each of these options is described below in more detail:

-u Prevent 'Variable not used' Warnings.

Under normal operation the compiler will issue warnings when a variable has been declared but not
used in the application.     However in a large application (particularly when using 'include' files to
define constants and global variables) it might be desirable to switch these warnings off if too many
are being generated.

-f Prevent Debug information being written to TEX file.

By default the compiler will write various debugging information to the excecutable binary output
file (.TEX file).        This information includes the source code file names and the line numbers
within the source code for each statement.        By specifying the -f option then the compiler will
not include this information into the .TEX executable file (making the .TEX file smaller).

-v<level> Specify verbose mode (<level>=0..9).

This  allows  the  compiler  to  be  run  in  verbose  mode  which  is  usually used  for  debugging.        
Setting  verbose  level  1  or  above  will  increase  the  amount  of  output  from  the  compiler  for  each
increasing level.    Verbose more 0 turns off the verbose mode for the compiler.      



p62

© Zentel Telecom Ltd, 2009

 -L<libname.[TEL]> Specify a TE libary file to search for functions to compile and link to.

A number of function source code files can be combined into a singel TE library file (.TEL
extension) using the Telecom Engine Utility Program: MKTEL.EXE.      This option allows these
library files to be searched for functions that will then be compiled and linked into the program in
the same way as normal functions found in .FUN files.      Note that .FUN files wlil always
override any files defined in a .TEL library file.

-r<DLL1[;DDL2[;DLL3...]]]  Specify one or more TE DLL or DEF files to load.

In order to link to the TE DLL libary functions then the compiler must load these DLLs to obtain
the function definitions (or the .DEF file that represents the function definitions for the DLL).         
The -r option allows for a semi-colon separated list of DLLs (or .DEF files) to be loaded at compile
time so that the function definitions can be accessed by the compiler.     For example:

TCL - r CXTERMX; CXSYS;CXTASK.DEF MyPr og

The above statement would attempt to load the TE Standard library DLLs:  CXTERMX.DLL,
CXSYS.DLL and CXTASK.DEF in order to resolve all the function names defined in these
libaries.    Note that if no extension is specified then it is assumed that it is a DLL that is to be
loaded.       See Loading DLLs and .DEF files for more information about this.

-s<Stack depth,Stack Size> Specify the stack depth and stack size for the program.

The header of the .TEX executable file contains two fields that defines the stack depth and stack
size to allocate at run-time for the application.     By default these are set to Stack Depth=256 and
Stack  Size=4096  which  should  be  sufficient  for  nearly  all  but  the  largest  and  most  complex
applications,   however  this  option  provides  the  means  to  increase  or  decrease  these  values  if
required.

The Stack  is  a  special  area of  memory which is  used by the  program at  run-time to  evaluate  the
results of expressions and to store the values of any arguments that are passed to functions and to
hold the return value. 

The Stack Depth defines the number of items that can be pushed onto the stack at any one time.     
The  main  thing  that  uses  up  stack  space  is  when  a  function  is  called  since  being  passed  to  the
function are pushed onto the stack before calling the function (plus the return address and number
of arguments is also puched onto the stack) and these are not removed until  a return statement is
encountered.            Therefore if your application calls functions with a large number of arguments
and/or if you have functions nested deeply in your application (functions that call functions that call
functions  etc  for  many nested  levels),  or  if  you  call  functions  recursively (i.e  functions  that  call
themselves),   then an analysis might need to be carried out to see if  the stack depth needs to be
increased.             As a rule of  thumb,  find the part  of  you program that  makes the  most  nest
function calls (or calls functions with a large number of arguments) and then add up the number of
arguments and add two for each function called (the extra two are for the return address and the
number of arguments which are also pushed onto the stack).     If this could exceed the stack depth
you have specifed then you should increase this.

The  other  thing  the  stack  is  used  for  is  for  holding  intermediate  values  when  evaluating



p63

© Zentel Telecom Ltd, 2009

expressions.     This might become significant if you have very long and complicated expressions
and you are already deep into nested or  recursive functions,   but  usually and expression will  not
need more the four or five entries on the stack before the expression is resolved to a single value
and removed from the stack.   

The Stack Size is the physical number of bytes that the stack contains.     Usually variables pushed
onto the stack will range in length from only a few characters (E.g. when a number is being used)
or  several  hundred characters for  long strings.        If  your application  passes  alot  of  long  string
values as arguments to functions then you might want to consider increasing the size of the stack to
ensure that the stack space does not run out.

As mentioned previously, the default stack size should be suffient for nearly all applications (I've
yet to write an application that required the stack to be increased).

-d<name> Define a constant and set its value to "1".

This option causes the constant to be defined with the name <name> and its  value will  be set to
"1".    For example:

- dI SDN

The above will define a constant called ISDN and set its value to "1".     This is equivalent to the
compiler  encountering  the  following  statement  within  the  global  declaration  block  of  the  main
source file:

const ISDN="1";

-d<name=value> Define a constant and set its value to <value>

This is a variation of the previous option and allows for a constant to be defined and its value to be
set to some <value> string.   For example:

- d I SDN_SUPPORT=OFF

The above will  define a constant called ISDN_SUPPORT and set  its  value to  "OFF".     This  is
equivalent to the compiler encountering the following statement within the global declaration block
of the main source file:

const I SDN_SUPPORT="OFF";

The  -d  option  is  often  used  in  conjuction  with  the  $if...$else...$endif  compiler  directives  which
allow condition compilation of portions of the source code (see Compiler Directives).

-e Output all errors to TCL.ERR file.

If  this  option is  specified then all  compiler  errors  are  written to  the  TCL.ERR file  in  the  currect
working directory (they are still also written to the console window).

-n Don't load the default TCL.DEF file.

By default the TE Standard Libary Set Definition file (TCL.DEF) is loaded by the compiler so that
the names of the TE standard library functions can be resolved without havihng to load the actuall



p64

© Zentel Telecom Ltd, 2009

DLLs.        This function prevents the TCL.DEF file from being loaded by the compiler by default
(See Loading DLLs and .DEF files).

-c<flag> Allow or disallow the use of 'C' style operators.

Set  <flag> to  1  to  allow 'C'  style  operators  to  be  used  in  the  program (or  0  to  disallow 'C'  style
operators (this is the default)).     The 'C' stlye operators being referred to here are &&, ||, ==, ! and
!= which are equivalent to the TE operators and, or, eq, not and <> respectively.

-z<definition file> Create library definition file from loaded DLLs and DEF files.

When this option is used it is not required that a program source file be specified since it causes the
compiler to output a definition file and it will not compile the source.     The definition file that is
output will be created from all of the other .DEF and DLL files that have been previously loaded
(including the default TCL.DEF and any files specified in the -r option).          

This is the easiest way to create .DEF definition files from the actually TE DLL.      If you don't
want the functions in the default TCL.DEF file to be included in the output .DEF file then -n option
should be specifed.      See Loading DLLs and .DEF files for more information about this.
   

-o-

Environment Variables
The TE Compiler relies on a number of environment variables which define the paths to function
files, include files, definition files or library files.      If any of these environment variables paths are
not specified then the compiler will just look in the current working directory for all files of this
type (unless a full path was specified in the TCL.EXE command line for any of them).        

Note that once a path is specified by an environment variable then the current working directory is
not automatically searched by the compiler unless it is included explicitly in the path variable (E.g.
as ".\")

All path variables can specify mulitple paths by providing a list of directories separated by
semi-colons,  for example:

set FUNCDI R=\ myproject\ common;. \ ; d:\ uti l i t i es\f uncti ons

Below are the path variables that are used by the compiler:

FUNCDIR Specifies the directories where the compiler will search for all function (.FUN)
files. 

INCDIR Specifies the directories where the compler will search for all include files (see
$include Compiler Directive)

TELDIR Specifies the directories where the compiler will search for TE library (.TEL)
files 

DEFDIR Specifies the directories where the compiler will search for DLL definition



p65

© Zentel Telecom Ltd, 2009

(.DEF) files. (see Loading DLLs and .DEF files)

In addition to the above path definition variables there are two other environment variables shown
below:

TELLIBS Defines a semi-colon separated list of TE library (.TEL) files to load (equivalent
to the -L compiler option)

TEDLLS Defines a semi-colon separated list of DLL or .DEF files to load (equivalent to
the -r compiler option)

These last two environment variables are the equivalent to swetting either the -L or the -r compiler
options.

-o-

Loading DLLs and .DEF files
The -r compile time option provides the mechanism to load the function definitions for external TE
DLL library  functions.   However  it  is  not  necessary to  always  load  the  actual  DLL libary  when
compiling an application,   instead the compiler can be instructed to use a .DEF file instead which
is  simply a  text  file  containing the  function definitions  from the  actual  DLL.    If  a  .DEF file  is
specified then the  compiler  does  not  need to  load the  entire  DLL in  order  to  access the  function
definitions - it will simply read them from ythe .DEF file instead.

This has two advantages over loading the full DLL at compile time:

a) Since the full DLL does not need to be loaded it makes the compilation faster.
b) Sometimes a DLL will automatically attempt to load other DLLs which may only be present on
the run-time machine and not on the machine where compilation is taking place (E.g. the ACULUB
DLLs libaries (sw_lib.dll, cc_lib.dll etc)).

By default there is one large definition file (TCL.DEF) that holds the definitions for all of the TE
Standard Library Set.    The compiler will search for this definition file in the current directory first,
then  it  will  search  in  the  directory  where  the  TCL.EXE  program  resides  (this  is  where  the
TCL.DEF file will reside by default).        By searching the currect directory first this allows the
default TCL.DEF file to be overridden by a specific TCL.DEF file in the current directory.

Therefore in general it is not necessary to load any of the TE Standary Library Set DLLs at compile
time  since  usually  the  compiler  will  load  the  default  TCL.DEF  file  which  will  contain  these
function definitions.           If this is not the behaviour that is required then the -n  option can be
specified which prevents  the  compiler  loading  the  default  TCL.DEF file  automatically (in  which
case individual DLL or .DEF files must be specified for the TE Standary Library Set  functions.

A definition file is a text file will the following format:

<DLL library  name 1>

<DLL compilation date>

<Number of Functions>

<Function 1 Minimum arguments>,<Maximum Arguments>,<UniqueFunction ID>,<Number of

Synonyms>,<Function name1>[,function name 2[,...]]>

<Function 2 Minimum arguments>,<Maximum Arguments>,<UniqueFunction ID>,<Number of

Synonyms>,<Function name1>[,function name 2[,...]]>



p66

© Zentel Telecom Ltd, 2009

...

[

<DLL library name 2>

<DLL compilation date>

<Number of Functions>

<Function 1 Minimum arguments>,<Maximum Arguments>,<UniqueFunction ID>,<Number of

Synonyms>,<Function name1>[,function name 2[,...]]>

<Function 2 Minimum arguments>,<Maximum Arguments>,<UniqueFunction ID>,<Number of

Synonyms>,<Function name1>[,function name 2[,...]]>

...

...]

For example,  below is the definition file for the CXSEM.DLL library:

cxsem

Nov 10 2006 11:39:08

4

1,1,115,1,sem_test

1,1,116,1,sem_set

1,-1,117,1,sem_clear

1,-1,16,1,sem_clrall

(Note that a maximum or minimum number of arguments of -1 means that a variable number of
arguments is allowed).

Definition files can be specified in the -r option by specifying the full name of definition file.   For
example:

TCL - r CXTERMX.DEF;C: \ DEFFILES\CXSEM. DEF MyProg

It is OK to mix DLLs and .DEF files in the -r option library list.      

Note that if the same function name is defined more than once either in multiple DLL libaries or
.DEF files then the one with the lowest unique function ID will be the one that is used.    

Also if two functions have the same unique function ID then the one that was defined last in the -r
option will overwrite the previous definition and will be the one that is used.

-o-

Function Name Resolution
If a conflict occurs between function names between functions defined in .FUN files.  .TEL library
files or within external DLLs then the order that the compiler will search for functions is as
follows:

1) Functions defined in TE DLLs.
2) Functions defined in the main source (.TES) file.
3) Functions defined in .FUN files.
4) Functions defined in TE library files and specified using the -L compiler option.



p67

© Zentel Telecom Ltd, 2009

If two functions have the same name then the above order will define which function will be
compiled/linked into the application.

-o-

The TE Run-Time Engine

Introduction
The Telecom Engine Run-Time consists of four parts as follows:

a) The Graphical User Interface (GUI) front-end   (TEX.EXE).
b) The Telecom Engine Scheduler  (CXDLL.DLL).
c) The Telecom Engine DLL back-end  libraries  (CXTASK.DLL, CXTERMX.DLL, CXSYS.DLL
etc.).
d) The executable byte code files that are run by the scheduler  (*.TEX) .

When the GUI front-end (TEX.EXE) is started it first loads the back-end Telecom Engine Libary
DLLs that have been specified (either on the command line or in the registry).         The
initialisation functions for all of these libaries are then called to ensure that the back-end is fully
initialised and ready.           

You should make sure that the PATH environment variable includes the locations of all the
Telecom Engine executables and DLLs.  

The TEX.EXE program then loads the Telecom Engine Scheduler (CXDLL.DLL) in a separate
thread and starts the scheduler engine.       

Finally,  any Telecom Executable applications that have been specified on the command line are
then loaded into the scheduler to begin execution.

Execution will continue until a system exit request is received either from one of the byte-code
application tasks or by attempting to close the Telecom Engine GUI appplication window.

The Telecom Engine front-end application has a set of tabbed windows for each of the following:

a) The System Log tab.
b) The Error Log tab.
c) The Trace Log tab.
d) The Library Configuration tab
e) Tools Tab for managing the Telecom Engine.

Below is a screenshot showing the system log tab on a typical system start-up:



p68

© Zentel Telecom Ltd, 2009

-o-

Command Line Options
The Telecom Engine front-end front-end application (TEX.EXE) should be started from the
command line.    The format required for running the TEX.EXE is as follows:

TEX [options] [List of applications]

The optional [options] can be one of the following start-up options:

Option Description
-n Prevent the default back-end libraries from loading at startup
-r<libary list> Load the following semi-colon separated list of  back-end libaries.

The optional [List of applications] is the list of .TEX files to load at start-up (each one separated by
a space).    Note that the TEX.EXE can be run without loading any byte-code applications for
execution if required.



p69

© Zentel Telecom Ltd, 2009

Thus the simplest form of the command line is as follows:

t ex

This will load the default list of back-end libaries and start the Telecom Engine Schedule thread,
but no byte-code (.TEX) applications will be loaded for execution (byte code applications can then
be loaded from the Tools Tab).

Below is an example where the default libaries specified by the Libary Configuration Tab are
prevented from loading by using the -n option, and a new set specified by the -r option are loaded
instead.     This will also attempt to load the byte-code application TEST1.TEX and start executing
it:

t ex -n - rcxtermx;cxtask;cxsys;cxstr i ng TEST1

If necessary, more than one byte code application can be loaded upon start-up by specifying more
than one file on the command line (separated by spaces):

t ex TEST1 TEST2 TEST3

The above command line will load the default libaries from the Registry and attempt to load and
execute the three byte-code (.TEX) files TEST1, TEST2 and TEST3.

-o-

Registry Settings
A number of settings for the front-end GUI application (TEX.EXE) are stored in the registry under
the following key:

HKEY_LOCAL_MACHINE\Software\Telecom Engine\TEX

The following entries can be found under this key:

Entry Name Description
AlphaSpeed This is the speed that the Telecom Engine Splash window will fade

upon start-up.     The AlphaBlend value of the splash screen form
will start at 0 (transparent) and every 100th of a second the value of
AlphaSpeed will be added to the AlphaBlend property until it
reaches 255.     The default value of AlphaSpeed is 3 which means
it will take 255/3=85 ticks to become completely opaque (i,e just
less than 1 second).         After the alphablend (fade-in) part of the
splash screen cycle the splash screen will display on the screen for
one more second before disapearing.     To prevent the fade-in part
of the cycle from occuring set the AlphSpeed value to 0 (in which
case the splash screen will just display for 1 second with no
fade-in).       To prevent the splash screen from displaying at all set
the AlphaSpeed value to -1 (0xFFFFFFFF).

FontSize The font size is used to calculate the size of the scrolling log



p70

© Zentel Telecom Ltd, 2009

window area.     If the screen resolution on the system you are using
is low then you should reduce the FontSize so that the TEX.EXE
windows can fit onto the screen properly.    However on high
reolution screens a small font-size might will make for a small
TEX.EXE window size which might be difficult to read.        
Suggested values of FontSize between 8 (for low res screens) and
16 (for high res screens) are suggested.         The default value of
FontSize is 10.

HideTools If this is set to a non-zero value then the 'Tools' tab will not be
shown on system startup.

CXLibraries This is the list of Telecom Engine Libaries to load upon start-up.  
This entry is a string type and the list of libaries should be written
as a semi-colon separated list of libary names.

OldLibraries This is the list of Old-Style Telecom Engine Libraries to load upon
start-up.    None of the standard library set supplied with the
Telecom Engine are in this format any more and this type of
libarary has now been depreciated and may soon become obsolete.

-o-

Scrolling Log Tabs
The Grpahical front end interface (TEX.EXE) has three tabs for the three different scrolling log
windows as follows:

a) The system log.
b) The error log.
c) The trace log.

The system log displays initialisation information showing the library DLLs that have been loaded
and the libary initialisation information, as well as other general system messages whilst the
Telecom Engine is running.          The error log displays any error or warning messages that have
been generated whilst the system has been running.    And the trace  log shows all trace messages
that have been generated whilst the Telecom Engine has been running.

Each of the log windows also generates log files on disk.         The name of the log files depends on
which scrolling log window generateed the log message.          

The system log window will cycle through two log files:  SYSLOG0.LOG and SYSLOG1.LOG.     
When the Telecom Engine starts it will always start writing from fresh into SYSLOG0.LOG
truncating the file (thuis overwriting any previous log).   Once the SYSLOG0.LOG file has reached
4MB in size it will close the file and start writing to SYSLOG1.LOG (truncating the original
contents).      Once this has reached 4MB in size then the cycle will start back at SYSLOG0.LOG
(truncating the original file).             Therefore a maximum of 8MB of system log will be retained
on in the two log files before the original data will be overwritten.

Similarly fvor the error log there will be two log files that get cycled through:   ERRLOG0.LOG
and ERRLOG1.LOG each of which will grow to a maximum size of 4MB before cycling to the
other log file.



p71

© Zentel Telecom Ltd, 2009

For the trace log,  since alot more trace is likely to be generated than for the system and error logs,
the trace log will cycle through 20 trace log files before cycling back and overwriting the original
log files.      Therefore the trace log files will cycle through TRACELOG0.LOG through to
TRACELOG19.LOG,  each file growing to a maximum of 4MB.

Note:    The application log file is created by the CXTERMX.DLL application terminal libary.  
This differs slighly in how it generates the application log in that upon startup it will not always
start at APPLOG0.LOG but will continue on from the last log file it wrote to.   Also there are up to
10 application log files written (APPLOG0.LOG to  APPLOG9.LOG) and each can grown up to
10MB in size before cycling to the next file.

It might be useful to start the Telecom Engine from a batch file so that the log files from the
previous run can be backed up (if necessary) and then deleted so that the system always starts from
a known state.

Below is a screen shot showing the trace log scrolling window from a typical run-time session (The
trace seen here has been generated by the ActiveX Data Objects (ADO) libary:

Notice that in the above screen shot the Error Log tab is shown in Bold Italic font to show that
there are unviewed messages in the error log.      This will occur for all scrolling log windows if
another tab is being viewed when a message arrives at on that scrolling log window.



p72

© Zentel Telecom Ltd, 2009

Also notice on the right there are two check boxes:

i) Show extra info.
ii) Show hidden errors.

The show extra info allows for the full log message to be displayed in the scrolling window area
exactly as it appears in the log file on disk.    By default only the text part of the log file is shown in
the scrolling log window whereas on disk the full log format is written.

The full log format is as follows:

<YYYYMMDD HHMMSS.mmm>  [<Application Task Info>] <Log MessageText>

The [<Application Task Info>] field is only written if the log message can be traced to a specific
running task (as opposed to a background thread or other system generated log message).         The
format of the <Application Task Info> is as follows:

<Program name>:<Task ID>:<Program Counter>

For example the following excerpt is taken from an ERRLOG0.LOG file and shows both forms of
the log message:

20090224 072033.068 adotest1:0000:03e6: @E Exception caught: Unspecified error (0x80004005)

20090224 072033.072 adotest1:0000:03e6: @E ... Caused by: adoRSetResync(0,1): 

20090224 072033.076 adotest1:0000:04b2: Err: Insufficient key column information for updating or

refreshing. number=80004005 native=3ef

20090224 072033.083 KillTask ID=0 found in connection handle 0

20090224 072033.083 KillConnection handle 0 found in recordset handle 0

The first three lines were generated by the asotest1.tex application running as taskId 0000.     The
program counters give the position of the program counter in the byte code that caused the log
message to be generated.  

The last two lines were generated by the background thread of the CXADO.DLL libary and are
some diagnostic messages generated for debug purposes.

Below is a screen shot of the same application that has been run with the 'Show Extra Info' check
box ticked..



p73

© Zentel Telecom Ltd, 2009

The 'Show Hidden Errors' check-box allows errors that have been suppressed by a call to 
term_errctl() to be displayed.    Sometimes an application may wish to suppress certain error
messages from being displayed to stop the scrolling logs from being overrun with unecessary error
messages.     By ticking this box then these messages will be displayed regardless of whether the
application tried to suppress them with a call to term_errctl() or equivalent.

The 'HIDE' button down the bottom right causes the TEX.EXE application to shrink to an icon the
system tray.        Note that this icon will turn red if any error messages are written to the error log
after the application has been minimised to the system tray to alert the user that errors have
occurred.

-o-

Library Configuration Tab
The Library Configuration Tab allows the Telecom Engine to be configured to load the same set of
back-end libaries each time it is run.

Below is a screen shot of the Libary Configuration Window:



p74

© Zentel Telecom Ltd, 2009

The left pane displays (and allows editing of) the list of back-end Telecom Engine libaries that will
be loaded by default upon start-up  (unless the -n command line option is specified (see Command
Line Options)).            The middle pane displays (and allows editing of) the older stlyle Telecom
Engine libaries (now depreciated and will possibly be made obsolete in the future).     The right
hand pane diaplys the libaries that were specified for loading on the command line (using the -r
command line option (see Command Line Options)).

In the above example the application was loaded with the following command line options:

tex -n -rcxtermx;cxado;cxtask;cxsys;cxstring <application name>

Note that the list of libaries that are loaded by default (those in the left and middle pane) are written
and read from the following registry key:

HKEY_LOCAL_MACHINE\Software\Telecom Engine\TEX

and are stored in the string type registry entrys:   

CXLibraries
OldLibraries 

The list is simply stored as a semi-colon separated list.

-o-



p75

© Zentel Telecom Ltd, 2009

Tools Tab
The tools tab provides a few mechanisms for dumping internal Telecom Engine Scheduler
information or for manually killing or loading byte-code tasks and manually loading back-end
libaries.

Below is a screen shot from the Tools Tab Window:

Extreme care should be taken when using any of the options on the left hand side of this form,
particularly on a running system as it could disrupt the execution of important tasks.        The
registry entry HideTools can be set to prevent the Tools tab from being shown on a live system to
prevent accidental disruption of the running tasks (see Registry Settings).

Below is a description of the buttons shown on this form:

Button Description
Spawn Task This button will cause the byte-code file entered into to the

adjacent edit box to be loaded into the Telecom engine
Scheduler.

Kill Task This button will kill the task ID entered into the adjacent
edit box

Trace Task The button will trace the task ID entered into the adjacent
edit box



p76

© Zentel Telecom Ltd, 2009

Restart Task This button will restart the task ID entered into the adjacent
edit box

Load Libary This button will load the back-end Telecom Engine Libary
file specified in the adjacent edit box.

Dump Tasks This button will dump a list of all of the tasks current
running in the system to the trace log.

Dump TEX This button will dump a list of all the byte code (*.TEX)
files that have been loaded

Dump Data Partition Internal use only (disabled)
Dump Code Partition Internal use only (disabled)

-o-

The TE Standard Library Set

Introduction
The main functionality of the Telecom Engine is provided by external DLL function libraries which
allows the Telecom Engine to interface with the operating system and various telecommunications
hardware as well as providing sets of functions for task management, console terminal and logging,
  inter-task communications, string manipulation, TCP/IP socket connectivity, database access etc. 
 

The  language  is  fully  extendable  and  new  DLLs can  be  written  to  offer  new  functionality  or  to
extend or replace the existing standard function sets.

The libraries belonging to the TE standard library set all have a name beginning with CX.     

The full list of libraries currently supplied is as follows:

Library DLL Name Description
Task Management
Library

CXTASK.DLL Starting and stopping tasks  (task_spawn(); task_chain();
task_sleep() etc.)

Terminal Console
Library

CXTERMX.DL
L

Console terminal, logging and keyboard input functions
(applog(); errlog(); kb_get() etc)

System library CXSYS.DLL File, directory, date and time functions..
String
Manipulation
Library

CXSTRING.DL
L

Functions for manipulating strings (strlen(); substr() etc)

Inter-task
Messaging Library

CXMSG.DLL Functions to all messages to be exchanged between tasks.
(msg_put(); msg_get() etc)

Global Variable
Library

CXGLB.DLL System wide global variables and large array handling



p77

© Zentel Telecom Ltd, 2009

Semaphore Library CXSEM.DLL Semaphore functions for mutual exclusion.
Clipper Database
Library

CXDBF.DLL Dbase3 DBF file handling and Clipper (NTX) indexing
functions (db_open(); db_get() etc)

Floating Point
Library

CXFP.DLL Floating point arithmetic functions (fp_add(); fp_mul()
etc).

Sockets Library CXSOCK.DLL Socket handling (TCP/IP and DataGram) – Slisten();
Sconnect() etc

Aculab E1/T1 Card
Library

CXACULAB.D
LL

Aculab Network card functions (CCwait(); CCmkcall()
etc)

Aculab Prosody
Card Library

CXACUDSP.D
LL

Aculab prosody speech card functions (SMplay();
SMrecord() etc).

Dialogic DTI Card
Library

CXDTI.DLL Dialogic DTI card functions (DTI_wait(); DTI_setsig()
etc)

Dialogic Speech
Card Library

CXDLGC.DLL Dialogic speech card functions (dx_play(); dx_record()
etc)

Dialogic Global
Call Library

CXGCALL.DLL Dialogic Global Call function (GCwait(); GCaccept() etc.)

ActiveX Data
Objects (ADO)
Database Library

CXADO.DLL Advance Data Objects (ADO) database libary for SQL
queries and commands on Database servers.
(adoConnection(), adoRecordSet() etc).

-o-

Manual Conventions
The entries in this manual all conform to the same conventions as follows:

Synopsis:   Provides a definition of the function and its arguments.
Arguments: Provides a description of the function arguments.
Description: Provides a detailed description of the function.
Returns: Describes the possible return values.

For each entry a synopsis is provided showing the function name, its return value and the function
arguments as follows:

Synopsis:
handle=getHandle(arg1,arg2[,arg3[,arg4]]);

In the above example the function getHandle() is defined with two compulsory arguments arg1,
arg2 and a two optional arguments arg3 and arg4.     Optional arguments are specified by showing
the arguments in square bracketss ([]).      



p78

© Zentel Telecom Ltd, 2009

Below is another slightly different example:

Synopsis:
handle=getHandle(arg1,arg2[,arg3[,...]]);

In this example the function getHandle() is defined with two compulsory arguments arg1, arg2 and
an unspecified number of optional arguments all of a similar type to arg3 (if it is specified).      By
specifying elipses inside the square brackets this indicates that the previous argument can be
repeated an unspecified number of times.

The argument description and detailed description will then provide clarification about what
arguments are actually required.

All example code shown in the manual will be shown in the 'Courier' font as shown below:

main

    applog("Goodbye Cruel World");

    sys_exit(1);

endmain

-o-

Task Management Library

Introduction
This  library  provides  the  task  management  functions  for  starting  and  stopping  tasks,  sleeping,
retrieving task arguments etc.

A new task can be started in the Telecom Engine either by naming a program in the TEX command
line,  using  the  TOOLS tab  in  the  TE Run-Time Engine  Window or  by using  the  task_spawn(),  
task_exec() or task_chain() functions in the CXTASK.DLL.        The  task_spawn() function starts
a new task and the original task continues processing.  The  task_exec() function starts a new task
and the calling task is suspended until the new task stops.      The task_chain() function starts a new
task and kills the calling task.

If spawn successfully launches a new task,  then the  return value is  the  task  ID of  the  new task.  
Otherwise a negative number is returned to indicate an error:

task_id = task_spawn("CHILD");

if (task_id < 0)

    errlog("Error spawning CHILD.TEX, Cannot continue ");

    exit (1);

endif



p79

© Zentel Telecom Ltd, 2009

Arguments may be optionally passed to the new task.  

task_spawn("SLAVE", port,chan);

The  new  task  can  retrieve  these  arguments  by  using  the  task_arg()  function.       A  typical
application will have a single ‘MASTER’ program that then spawns all other tasks in the system.  
Usually  there  would  be  one  task  in  charge  of  each  network  channel  and  the  port  and  channel
number (amongst other parameters) would be passed to the slave task.      Here is a simple example
using the CXACULAB.DLL library:

// MASTER.TEX program:

int port, chan;

main

    port=0;    //  The first E1

    // Spawn a slave task for each channel of the E1

     for (chan = 1; line <= 30; chan++)

        task_spawn("SLAVE", port,chan);

    endfor

endmain

// SLAVE.TEX program:

int port, line;

main

    // Get the port and chan that this task is in charge of ..

    port = task_arg(1);

    chan=task_arg(2);

    // Enable inbound calls on chan

    CCenablein(port,chan)

    

    // Wait for incoming call

    while(CCwait(port,chan,0) != CS_INCOMING_CALL_DETECTED)

         ;

    end

    

     // Answer the call

    CCaccept(port,chan);

    ...

endmain

The  MASTER.TEX  program (which  would  be  specified  on  the  command  line  to  the  TEX.EXE
run-time program) spawns 30 SLAVE.TEX tasks, each one in charge of a single channel (the port
and channel being passed as arguments to the SLAVE task).    The SLAVE task the waits for and
incoming call on the channel and answers the phone when one arrives.      This task could then start
playing  speech  files  or  could  call  task_chain()  to  launch  another  application  (depending  of  the
received DID digits for example).

-o-

Function Quick Reference
A summary of the full set of functions in this library is as follows (optional arguments are show in
curly braces {}):



p80

© Zentel Telecom Ltd, 2009

task_id=task_spawn(task_name{, arg1 {, arg2 {,..arg15 }}})
task_id=task_chain(task_name{, arg1 {, arg2 {,..arg15}}})
return_value=task_exec(task_name{, arg1 {, arg2 {,..arg15}}})
parent_id=task_parentid()
task_return(value)
task_sleep(tenths)   
task_hangup()
task_defersig(flag)
task_id=task_getpid()
task_clrdefer()
arg_value=task_arg(arg_num)
task_kill(task_id)

-o-

Task Management Library Function Reference

task_spawn
Synopsis:
        task_id=task_spawn(task_name[, arg1 [, arg2[,..arg15]]]])
Arguments:
        task_name – The name of the task to spawn (with or without the .TEX) extension)
        arg1..arg15 – Optional arguments to pass to spawned task (up to 15)

Description:     This  function  creates  a  new  task  from  the  compiled  byte  code  file  given  in
task_name.     

If the .TEX extension is omitted it will be added automatically.    

If  the  TEXDIR  environment  variable  is  set,  then  the  semi-colon  delimited  list  of  directories
specified in this environment variable will be searched in order for the file specified in task_name. 
 If TEXDIR is not set then the only current directory will be searched.

If any of arg1..arg15 are specified then these arguments will be passed to the new task which can
then be read using the task_arg() function.

The function call  will  always return immediately regardless  of  whether  the  new task  was  started
successfully or not.
 
Return Value:

The function will return the task ID of the spawned task, or else a negative error code.

-o-

task_chain



p81

© Zentel Telecom Ltd, 2009

Synopsis:
        ret_code=task_chain(task_name[, arg1 [, arg2[,..arg15]]]])
Arguments:
        task_name – The name of the task to spawn (with or without the .TEX) extension)
        arg1..arg15 – Optional arguments to pass to spawned task (up to 15)

Description:     This  function  creates  a  new  task  from  the  compiled  byte  code  file  given  in
task_name and kills the calling task if the new task is started successfully.     

If the .TEX extension is omitted it will be added automatically.    

If  the  TEXDIR  environment  variable  is  set,  then  the  semi-colon  delimited  list  of  directories
specified in this environment variable will be searched in order for the file specified in task_name. 
 If TEXDIR is not set then the only current directory will be searched.

If any of arg1..arg15 are specified then these arguments will be passed to the new task which can
then be read using the task_arg() function.

The  function  call  will  only return  if  it  cannot  start  the  new task  for  any reason  (e.g.  invalid  file
name or file not in TEXDIR directory path).    If the task starts successfully then the calling task is
immediately killed.
 
Return Value:

The function will only return if it fails in which case it returns a negative error code.

-o-

task_exec
Synopsis:
        ret_code=task_exec(task_name{, arg1 {, arg2 {,..arg15}}})
Arguments:
        task_name – The name of the task to spawn (with or without the .TEX) extension)
        arg1..arg15 – Optional arguments to pass to spawned task (up to 15)

Description:     This  function  creates  a  new  task  from  the  compiled  byte  code  file  given  in
task_name.    If  the  new task starts  successfully then  the  calling  task  will  be  suspended (i.e.  will
block) until the new task stops (either by encountered a stop statement, or reaching the end of the
program  instructions,  or  by  calling  a  task_return()  function,  or  if  it  explicitly  killed  (say  by  a
task_kill() call) or if the child task chains to another task..

The calling task   If the .TEX extension is omitted it will be added automatically.    

If  the  TEXDIR  environment  variable  is  set,  then  the  semi-colon  delimited  list  of  directories
specified in this environment variable will be searched in order for the file specified in task_name. 
 If TEXDIR is not set then the only current directory will be searched.

If any of arg1..arg15 are specified then these arguments will be passed to the new task which can
then be read using the task_arg() function.



p82

© Zentel Telecom Ltd, 2009

If the child task chains to another task then the child is deemed to have stopped and the parent will
be woken.  If the child task encounters a restart statement then the parent task will not be woken
up ans the child is deemed to be still active.

Return Value:

If the new task could not be started then the function will return a negative error code.    If the new
task  was  started  successfully then  the  function  will  only  return  once  this  new task  is  stopped  or
killed.      The return values will then be as follows:

Empty string “” is returned if the task encountered a stop or the end of program reached or if the
task was expicitly killed, or the child chained to another task.

“?” is returned if the task stopped due to a fatal error (like stack overflow).

If task_return(str) is called from the new task then the return value given is this call will become
the return value of the task_exec() function call.    It would be advisable not to return a negative
value or one of the above string values from this call to avoid confusion.

-o-

task_parentid
Synopsis:
        task_id=task_parentid()
Arguments:
     none
Description:     This  function  returns  the  ID  of  the  task  that  started  this  task  through  a  call  to
task_spawn(),  task_exec()  or  task_chain().        This  can  be  useful  for  example  if  a  child  task
needs to communicate with the parent task using Telecom Engine inter-task messaging.

If there is no parent task either because the task was started by the TEX.EXE run-time program or
the parent task has stopped or been killed then this function will return -1

Return value:

Either the task ID of the parent task or -1 if there is no parent task or the parent task has stopped or
been killed.

-o-

task_return
Synopsis:
        task_return(return_str)
Arguments:
     return_str = The string value to return to the parent task
Description:    This function stops the current task and sets the return value of the parent task to



p83

© Zentel Telecom Ltd, 2009

return_str.      If the task was started using the task_exec() function then this function will  return
with the value specified in the return_str .   If the parent task has been killed, or did not start the
task  using  the  task_exec()  function,  then  the  calling  task  will  still  be  stopped  but  the  return_str
argument will be ignored.

Return Value:

This function stops the current task and does not return.

-o-

task_sleep
Synopsis:
        task_sleep(tenths)
Arguments:
     tenths = The number of tenths of a second to put the task to sleep.
Description:    This function puts the calling task to sleep for the specified number of tenths of a
second.        The function blocks during this time and will only wake up when the specified timeout
expires.         

Returns Value:

Returns -1 if an invalid time is given (<0) otherwise returns empty string “” when timeout expires.
 

-o-

task_hangup
Synopsis:
        task_hangup(task_id)
Arguments:
     task_id = The id of the task to send the hangup signal to. second to put the task to sleep.
Description:   This function sends a hangup signal to the specified task ID which will cause the
specified task to jump immediately into its onsignal function.     If the task specified does not have
an onsignal function declared then the signal will be ignored and the task will carry on processing
as normal.      If the task specified has called task_defersig(1)  one or more times then the jump to
onsignal will be deferred until the task clears all defers (either by calling task_defersig(0) the
corresponding number of times or by calling task_clrdefer())

Return Value:

Returns 0 is call was succesfull, -1 if invalid task ID is specified.    No indication is returned as to
whether the specified task actually jumped to its onsignal function.

-o-



p84

© Zentel Telecom Ltd, 2009

task_defersig
Synopsis:
        task_defersig(flag)
Arguments:
     flag = Either 1 or “(“ to defer jump to onsignal, else 0 or “)” to clear previous defer request.
Description:     This call is used to prevent a jump to onsignal from occurring until a particular
block of code has finished executing.     Each time task_defersig() is called with flag set to 1 or “(“
a counter is increased.     Each time task_defersig() is called with flag set to 0 or “)” a counter is
decreased (but not below 0).      If a signal is received whilst the counter is higher than zero then the
jump to onsignal will not occur until the counter reaches zero again (through corresponding calls
to task_defersig(0) or a call to task_clrdefer()).

Calls to task_defersig(1) can be nested, but the programmer must make sure there is a
corresponding task_defersig(0) to match (or a single call to task_clrdefer()) otherwise the task can
never respond to signal events.       This is a very common bug and can cause channels to get stuck
if no other method is employed to detect a hangup event (such a noticing that the caller has stopped
responding to menus).

The programmer should use task_defersig() during database updates or file writes or anywhere else
where a hangup signal need to be temporarily ignored..

For example:

// Prevent jumps to onsignal while we write to a file..

task_defersig(1);

// Carry out some tasks that should not be interrupted…

write_to_log(“This cannot be interrupted by a hangup_signal”);

// Now allow jumps to onsignal again…

task_defersig(0).

Note that instead of passing 1 and 0 to task_defersig() you can pass “(“ and “)” instead which
reflects the nested nature of the calls to this function, but this is up to programmer preference E.g.

// Prevent jumps to onsignal while we write to a file..

task_defersig(“(“);

// Carry out some tasks that should not be interrupted…

write_to_log(“This cannot be interrupted by a hangup_signal”);

// Now allow jumps to onsignal again…

task_defersig(“)”).

    
This maybe more intuitive for some programmers since it reminds the programmer that all “(“ must
be matched by a corresponding “)”.

Again watch out for bugs like this:

func f()

   task_defersig(“(“);

   x=do_something_important();



p85

© Zentel Telecom Ltd, 2009

   // check for error

   if(x < 0)

       // This looks like a bug since a corresponding 

       // task_defersig is not being called before returning 

       // from the function.

       return x

   end

   // This is OK but where is the one in the if statement above!!??

   task_defersig(“)“);

endfunc

Return Value:

Returns an empty string “”.

-o-

task_clrdefer
Synopsis:
        task_clrdefer()
Arguments:
     none
Description:     This call is resets the task_defersig() counter back to zero thus allowing hangup
signals to cause jumps to onsignal again.     If a hangup signal had already been received then this
function will not return and a jump to onsignal will occur immediately.

This is often used where an non-recoverable error has been received and the programmer wishes to
jump immediately to onsignal to disconnect the caller.  

For example:

func f()

   task_defersig(“(“);

   x=do_something_important();

   // check for non-recoverable error.

   if (x < 0)

      // can’t recover so….

      // First clear all signal defers (there maybe

      // some nested calls outside this function)

      task_clrdefer();

      // send a hangup signal to self to force jump to onsignal

      task_hangup(task_getpid());

   endif

   …

  task_defersig(“)”);

end

Return Value:

Returns the empty string “”.

-o-



p86

© Zentel Telecom Ltd, 2009

task_getpid
Synopsis:
        task_getpid()
Arguments:
     none
Description:     This call returns the task ID (otherwise know as the  process ID) of the calling task.
   This can be used so a task can send a hangup signal to itself to force a jump to onsignal:

task_hangup(task_getpid());

Return Value:

Returns the task ID of the calling task.

-o-

task_arg
Synopsis:
        task_getpid(arg_num)
Arguments:
     arg_num   - The argument number to return.
Description:     This call returns the value of the argument number arg_num passed to the task by
the parent task through a call to task_spawn(), task_exec() or task_chain(). 

Arguments are numbered from 0 through to 15, where argument 0 returns the name of the calling
task (i.e. the name of the .TEX byte code file).    Arguments 1 through to 15 are the arguments
passed the call to task_spawn(), task_exec() or task_chain().    If an attempt is made to get the value
of an argument that was not passed by the parent task then the function will return an empty string
“”.

Return Value:

Will return the name of the TEX byte code file if argument 0 is specified, otherwise will return the
argument 1 through to 15 passed to the task from the parent task (or an empty string “”).

-o-

task_kill
Synopsis:
        task_taskkill(task_id)
Arguments:
     task_id   - The task ID of the task to kill.
Description:     This function will instantly kill the specified task.   The specified task will stop
processing immediately and the task ID will become invalid (until reused by another task).

Return Value:



p87

© Zentel Telecom Ltd, 2009

Will  return  -1  if  an  invalid  task  ID  was  given,  else  will  return  0  if  the  task  was  successfully
stopped.

-o-

System library

Introduction
The System library provides a set of functions to interface with the operating system and provides
the following sets of function:

Buffer Manipulation
Functions

The functions allow for manipulation of binary data which would
otherwise be difficult due to the fact that TE variables store data
as null terminated ascii strings.     Buffers are used mainly for
reading and writing binary data to and from files. 

File Handle Functions  The file handle functions allow for files to be opened and read
from and written to.     This functions can be used in conjuction
with the buffer manipulation functions to read and write binary
files, or for reading and writing Ascii text files.

File System Functions The file system function offer the ability to manaipulate the file
system and the directory and file level (E.g copying or renaming
files and searching directories)

Date and Time Functions The date and time functions allow access to the system date and
time and offer various date and time manipulation functions (such
as adding or subtracting time or finding out the day of the week)

Other System Functions these functions provide other miscellaneous system functions such
as exiting the Telecom Engine or reading environment variables.

-o-

Library Limits and Defaults
In this version of the library the following limits and default values are hardcoded.    To change any
of these values will require recompilation of the library.   In future versions these values may
become configurable.

Description Limit
Size of Buffers 1024 Bytes
Maximum number of Buffers 32
Maximum Open Files 2048
Maximum Number of File Locks 2048

-o-



p88

© Zentel Telecom Ltd, 2009

Side Effects From Signals
When a task stops or is killed then a notification signal is sent to the libary notification function
which will automatically the following actions:

All Buffers allocated to the task are released
All file locks made by the task are released
All File handles allocated to the task are closed
Any file copy initiated by the task is cancelled.

NOTE:  The above actions will also be carried out if a restart statement is encountered or if the
task chains to another task (since this is equivalent to starting a new task then killing the calling
task).

-o-

System Library Quick Reference
Buffer Manipulation Functions

buf_handle=sys_bufuse()
sys_bufrls(buf_handle)
sys_bufrlsall()
sys_bufcopy(buf_dest,buf_source)
sys_bufmove(buf_dest,dest_offs,buf_source,source_offs,num_bytes)
sys_bufset(buf_handle,offs,string)
sys_bufget(buf_handle,offs {,num_bytes})

File Handle Functions

file_handle=sys_fhopen(filename,flags)
sys_fhclose(file_handle);
sys_fhcloseall()
sys_fhseek(file_handle,offset,fromwhere)
sys_fhreadbuf(file_handle,buf_handle,bytes)
string=sys_fhgetline(fil_handle)
sys_fhwritebuf(fil_handle,buf_handle,bytes)
sys_fheof(fil_handle)
sys_fhputline(fil_handle,string)
sys_fhlock(fil_handle,offset,bytes)
sys_fhunlock(fil_handle,offset)
sys_fhwrites(file_handle,string)
sys_fhsetsize(fil_handle,size)
hex_handle=sys_gethandle(file_handle)

File System Functions

sys_fcopy(source_filename,dest_filenname)
sys_fdelete(filename)
sys_finfo(filename,infotype)



p89

© Zentel Telecom Ltd, 2009

sys_frename(source_filename,new_filename)
sys_dirmake(dir_name)
sys_dirremove(dir_name)
sys_dirfirst(path,attributes)
sys_dirnext()
sys_dirend()
sys_diskfree()

Date and Time Functions

{YY}YYMMDD=sys_date({long_format_flag})
HHMMSS=sys_time()
ticks=sys_ticks(bios_or_ms_flag)
sys_tmrstart()
secs=sys_tmrsecs()
{YY}YYMMDDHHMMSS=sys_timeadd({YY}YYMMDD,HHMMSS,secs)
{YY}YYMMDDHHMMSS=sys_timesub({YY}YYMMDD,HHMMSS,secs)
{YY}YYMMDD=sys_dateadd({YY}YYMMDD,days)
sys_settime({YY}YYMMDD,HHMMSS)
day=sys_datecvt({YY}YYMMDD,convert_type)

Operating System Functions
sys_exit(exit_value)  
sys_getenv(variable_name)

-o-

System Library Function Reference

Buffer Manipulation Functions

sys_bufuse
Synopsis:
        buf_handle=sys_bufuse()
Arguments:
      None

Description:     This function returns a handle to one of the pool of 1024 byte buffers which can
then be used by the task in the sys_fhread() and sys_fhwrite() functions.

Return Value:

The function will  return a unique handle to a 1kb buffer,  else wioll  return -1 if  there are no free
bufferes available.

-o-



p90

© Zentel Telecom Ltd, 2009

sys_bufrls
Synopsis:
        sys_bufrls(buf_handle)
Arguments:
      buf_handle - The handle of the buffer to release.

Description:    This function releases the specified buffer handle back to the pool of free buffers.   
   Note that all buffers allocated to a task will be automatically released if the task stops or is killed.
    This includes if the task chains to another task or if the task restarts.

Return Value:

Will return 0 if the buffer is released or -1 if an invalid handle is given.

-o-

sys_bufrlsall
Synopsis:
        sys_bufrlsall()
Arguments:
      None

Description:     This function releases all  buffers allocated to the calling task back to the pool  of
free buffers.       

Note that all buffers allocated to a task will be automatically released if the task stops or is killed.  
 This includes if the task chains to another task or if the task restarts.

Return Value:

Will return 0 

-o-

sys_bufcopy
Synopsis:
        sys_bufcopy(buf_dest,buf_source)
Arguments:
      buf_dest           -  The destination buffer handle
      buf_source       -  The source buffer handle

Description:    This function copies the entire contents of the buffer specified by buf_source into
the buffer specified by buf_dest

Return Value:

Will return 0 on success or -1 if an invalid handle is given.



p91

© Zentel Telecom Ltd, 2009

-o-

sys_bufmove
Synopsis:
        sys_bufcopy(buf_dest,dest_offs,buf_source,source_offs,num_bytes)
Arguments:
      buf_dest           -  The destination buffer handle
      dest_offs          -  The byte offset in the destination buffer
      buf_source       -  The source buffer handle
      source_offs      -  The byte offset in the source buffer
      num_bytes       -  The number of bytes to copy

Description:     This function copies  num_bytes bytes from the buffer specified by buf_source  at
offset source_offs to the buffer specified by buf_dest at offset dest_offs.     

Return Value:
Will return 0 on success or -1 if an invalid handle or and attempt is made to read or write beyond
the start or end of either buffer.

-o-

sys_bufget
Synopsis:
        sys_bufget(buf_handle,offs {,num_bytes})
Arguments:
      buf_handle       -  The buffer handle
      offs                   -  The byte offset into the buffer 
      num_bytes         - Optional argument specifying the number of bytes to get.

Description:    If called with two arguments, returns the given byte in the buffer at byte offest offs
as a one-character string (unless the byte is zero, in which case the string is empty). The first byte in
the buffer is numbered zero. 

A third argument bytes may be given specifying a number of bytes to extract from the buffer. The
return value is then a string of length bytes (unless one of the bytes in the specified range is zero, in
which case the zero byte terminates the string).

Return Value:

Will return 0 on success or -1 if an invalid handle is given or an attempt is made to read beyond the
end or before the beginning of the buffer

-o-

sys_bufset
Synopsis:



p92

© Zentel Telecom Ltd, 2009

        sys_bufset(buf_handle,offs,string)
Arguments:
      buf_handle       -  The buffer handle
      offs                   -  The byte offset into the buffer 
      string                - The string to write

Description:    This function writes the given string into the specifier buffer at byte offset given by
offs.     The terminating null byte of string is not written to the buffer.

Return Value:

Will return 0 on success or -1 if an invalid handle is given or an attempt is made to write beyond
the end or before the beginning of the buffer.

-o-

File Handle Functions

sys_fhopen
Synopsis:
        file_handle=sys_fhopen(filename,flags)
Arguments:
        filename          -   The path of the file to open
        flags                -   Defines how the file is to be opened.

Description:    This function opens the file specified by filename and returns a file_handle to the
file.        Flags is a string that defines how the file should be opened.      Each character of the string
in flags has a different meaning as follows:

        r        -   Open the file for reading
        w        - Open the file for writing
        s        -   Open the file in shared mode
        c        -   Create the file if it deosn't exist
        t        -   Truncate the file to 0 bytes when it is opened.

At least one of the flags r or w should be specified (or both), whereas the other flags (s, t or c) are
optional.

For  example,  the  following  code  specifies  that  "myfile.txt"  should  be  opened  for  reading  and
writing in shared mode and it should be created if it doesn't exist:

    file_open("myfile.txt","rwsc");

The  following  specifies  that  "myfile.txt"  should  be  opened  for  reading  in  exclusive  mode  (non
shared).   

    file_open("myfile.txt","r");        



p93

© Zentel Telecom Ltd, 2009

The file handle returned will actually be an integer between 0 and the maximum number of open
files  allowed  by  the  library  -  it  will  not  be  an  operating  specific  file  handle.     To  obtain  the
operating system file handle (say for use by other DLL libaries) then the function sys_gethandle()
can be used.

Note that  if  the same file  is  opened by multiple tasks then each task  will  receive its  own unique
handle to the file.

Return Value:

The  function  will  return  a  unique  file  handle  or  an  negative  error  value  if  the  file  could  not  be
opened.     The  value  returned  will  be  that  which  is  returned  by  the  Windows  GetLastError()
function.

-o-

sys_fhclose
Synopsis:
        sys_fhclose(file_handle)
Arguments:
        file_handle       -   The file handle to close

Description:    This function closes a handle previously opened by a call to sys_fhopen().    Any
locks placed by fil_lock() using this handle will be unlocked.  Only files that have been opened by
a specific task can be closed by that task - if an attempt is made to close a file opened by another
task then an error is returned.

Note  that  if  a  task  is  stopped  or  is  killed  then  all  files  opened  by  that  task  are  automatically
released.

Return Value

Returns 0 if the file was closed successfully or -1 if an invalid file handle is given.

-o-

sys_fhcloseall
Synopsis:
        sys_fhcloseall()
Arguments:
        None

Description:    This function closes all files that were opened by the calling task.    Any file locks
established on the open files will be released.

Note  that  if  a  task  is  stopped  or  is  killed  then  all  files  opened  by  that  task  are  released
automatically.

Return Value



p94

© Zentel Telecom Ltd, 2009

Returns 0 

-o-

sys_fhseek
Synopsis:
        sys_fhseek(file_handle,offet,fromwhere)
Arguments:
        file_handle        - The file handle
        offset                - The byte offset in the file to seek to 
        fromwhere         - Where to seek from

Description:    This function moves the current file pointer of the specified file_handle to the byte
position  in  the  file  specifed  by  offset.     The  fromwhere  argument  defines  where  offset  is  being
measured from:

        0        move relative to start of file
        1        move relative to current position
        2        move relative to end of file

A negative value of offset indicates to move the pointer backwards towards the start of the file.       

Return Value

Returns the new file position relative to the start of the file, or a negative error code.

Since  the  function  returns  the  new  position  in  the  file  after  the  move  has  been  carried  out,  the
current file position can be establish by calling the function but by specifying a move of zero bytes
from the current position.    The following example uses he sys_fhseek() function to find the length
of a file by moving to the last byte.     Once the length has been found it then moves back to the
previous position in the file:

     // Get our current position

     curr_pos=sys_fhseek(fhandle,0,1);

     // Move to end of file to find the file size

     file_size=sys_fhseek(fhandle,0,2);

     // Move back to where we started from

     sys_fhseek(fhandle,curr_pos,0); 

-o-

sys_fhreadbuf
Synopsis:



p95

© Zentel Telecom Ltd, 2009

        sys_fhreadbuf(file_handle,buf_handle,num_bytes)
Arguments:
        file_handle       -   The file handle to read from
        buf_handle       -  The buffer handle of the buffer to read the data into
        num_bytes        - The number of bytes to read.

Description:    This function attempts to read num_bytes bytes from the given file_handle into the
given buffer.       The buf_handle is a handle to a 1Kbyte buffer returnedd from a call to sys_bufuse
().      

The maximum number of bytes that can be read is 1024 (the maximum size of a buffer).

Return Value

Returns 0 the number of bytes actually read or a negative error code (as returned by the windows
function GetLastError()).     If an invalid argument is given then the function will return -1.

For eample the following code copies the contents of one file to another by reading 1024 bytes at a
time:

main

   int fh1,fh2,bytes;

   int bufh;

   fh1=sys_fhopen("source.txt","rs");

   fh2=sys_fhopen("dest.txt","rwsct");

   bufh=sys_bufuse();

   

   do

      bytes=sys_fhread(fh1,bufh,1024);

      if(bytes > 0)

           sys_fhwrite(fh2,bufh,1024);

      endif

   until(bytes < 1024);

endmain

-o-

sys_fhwritebuf
Synopsis:
        sys_fhwritebuf(file_handle,buf_handle,num_bytes)
Arguments:
        file_handle       -  The file handle to write tom
        buf_handle       -  The buffer handle of the buffer to write the data from
        num_bytes        - The number of bytes to write.

Description:    This function attempts to write num_bytes bytes to the given file_handle from the
specified.       The buf_handle is a handle to a 1Kbyte buffer returned from a call to sys_bufuse().   
  



p96

© Zentel Telecom Ltd, 2009

The maximum number of bytes that can be written is 1024 (the maximum size of a buffer).

Return Value
Returns the number of bytes actually written or a negative error code.

-o-

sys_fhgetline
Synopsis:
        sys_fhgetline(file_handle,pVar)
Arguments:
       file_handle       -   The file handle to read from
      pVar                -      Pointer to the variable that will hold the returned string
       
Description:    This function is used to read strings from ASCII text files.    It will read the string
from the current file position up to the end of the current line (i.e until a carriage-return/line-feed is
encountered)  and  write  that  string  to  the  variable  pointed  to  by  pVar.       Carriage-return  and
Line-feed characters are not included in the returned string.

An empty will be returned if the line only contains a carriage-return/line-feed.

Return Value:
The function returns 0 on success or a negative error code.

The  following  example  opens  a  text  file  and  writes  each  line  of  the  file  to  the  application  log
terminal.

   
    int file_handle;

    var str:255;

    file_handle=sys_fhopen("textfile.txt","rs");  

    while(!sys_fheof(file_handle))

         // Read the next line from the file..

         sys_fhgetline(file_handle,&str);

         // write line to the application log and terrminal console

         applog(str);

    endwhile

        

-o-

sys_fhputline
Synopsis:
        sys_fhputline(file_handle,string)
Arguments:
       file_handle       -   The file handle to write to



p97

© Zentel Telecom Ltd, 2009

      string                -    The string to write to the file
       
Description:     This  function  appends  the  given  string  to  the  file  specified  by  file_handle  and
automatically writes a Carriage-return/Line-Feed cobination to terminate the line.    Before writing
the text the function will seek to the end of the file before writing the text line.       

If you are appending to a log file that might be written to across a network by several machines it is
advisable  to  use  file  locks  to  make  sure  that  only  one  machine  is  appending  at  any  one  time
(otherwise garbled data can occasionally appear in the file).

Return Value
The function will return 0 in sucess or an negative error code.

-o-

sys_fhwrites
Synopsis:
        sys_fhwrites(file_handle,string)
Arguments:
       file_handle       -   The file handle to write to
      string                -    The string to write to the file
       
Description:     This function writes the given string to the file specified by file_handle.   Unlike
sys_fhputline() this function will not append to the end of the file, it will write the string from the
current file position and it will NOT append a carriage return or line-feed character.

Return Value
The function will return 0 in sucess or an negative error code.

-o-

sys_fheof
Synopsis:
        sys_fheof(file_handle)
Arguments:
        file_handle       -   The file handle 

Description:    This function checks whether the end of file has been reached when reading from
files.     If the current file position is past the end of file the this function will return 1, otherwise it
will return 0.

Return Value:   Will return 1 if end of file has been reached, otherwise will return 0 or a negative
error code.

-o-

sys_fhlock



p98

© Zentel Telecom Ltd, 2009

Synopsis:
        sys_fhlock(file_handle,position,bytes)
Arguments:
        file_handle       -   The file handle 
        position            - The byte offset in the file to lock
        num_bytes        - The number of bytes to lock.

Description:   This function attempts to lock the number of bytes specified by num_bytes at byte
offset position in the file specified by file_handle.    It is possible to lock a region that is beyond the
end of the file.

Note that all file locks will be release when a fil_handle is closed.

Return Value: 

The  function  will  return  0  if  the  lock  was  sucessfully  obtained,  otherwise  it  will  return  -33  if  it
could not obtain the lock or another negative error code.

-o-

sys_fhunlock
Synopsis:
        sys_fhunlock(file_handle,position)
Arguments:
        file_handle       -   The file handle 
        position            - The byte offset in the file to unlock

Description:    This  function  allows  a  task  to  release  a  lock  it  previously  obtained  by  a  call  to
sys_fhlock().      The  current  task  must  have  made  a  sucessful  call  to  sys_fhlock()  for  a  region
starting at the same byte position.

Note that locks are automatically removed and files all closed if a task stops or is killed (including
if it encounters a restart statement or chains to another task).

Return Value:
Returns 0 on sucess or a negative error code.

-o-

Synopsis:
        sys_fhsetsize(file_handle,size)
Arguments:
        file_handle       -   The file handle 
        size                   - The size to set the file to



p99

© Zentel Telecom Ltd, 2009

Description:    This function will set the file specified by file_handle to the size specified by size.  
  If the size specified is less than the current file size, the file will be truncated. If the size specified
is  longer than the current file size, the file will be extended with "random" data (i.e., data currently
residing in currently unassigned sectors)

Return Value:   

Returns 0 on sucess else a nga

-o-

File System Functions

sys_fcopy
Synopsis:
        sys_fcopy(source_filename,dest_filename{,non_block_flag})
Arguments:
        source_filename       -   The name of the source file
        dest_filename           -   The name of the destination file
       non_block_flag          -  Optional flag to specify if the calling task should block until  copy
completes.

Description:    This  function  attempts  to  copy  the  file  specified  in  source_filename  to  the  file
specified in dest_filename.   Since a file copy can take a substaintial amount of time (depending on
the file size) the copy is carried out in a separate thread and the calling task is blocked (unless the
non_block_flag is specified and set to a non zero value).          When the copy has complete then
the calling task is woken up.

If the optional non_block_flag  is set to a non-zero value then the function will return immediately.
   Only one file copy can be carried out by a task at any one time, although multiple file copies can
be being carried out by multiple tasks

Return Value:
Returns 0 on sucess or a negative error value is the copy fails.

Return Value:   Will return 1 if end of file has been reached, otherwise will return 0 or a negative
error code

-o-

sys_dirremove
Synopsis:
        sys_dirremove(directory_name)



p100

© Zentel Telecom Ltd, 2009

Arguments:
        directory_name       -   The name of the directory to remove

Description:   This function attempts to remove the directory_name specified.    The function will
fail if the specifed directory is not empty.

Return Value:
Returns 0 on success or a negative error code. 

-o-

sys_frename
Synopsis:
        sys_frename(filename,new_filename)

Arguments:
        filename               -   The name of the file to rename
        new_filename       -   The new name of the file

Description: This function attempts to rename the file specified by filename to the new_filename
specified.      The directory path of the  new_filename can be different to the original filename in
which case the file will moved to the new directory path

Return Value:
This function will return 0 on success or a negative error code.

-o-

sys_dirfirst
Synopsis:
        sys_dirfirst(path,attributes)
Arguments:
        path        -   The path to search for
       attributes -  The attributes of the file or directory to search for.

Description:    This  function  starts  a  search  for  the  first  occurance  of  the  file  or  directory  that
matches the path and attributes specified.    Wildcard characters (* and ?) can be used in the path. 
     

The  attributes  argument  can  include  one  or  more  of  the  following  characters  indicating  the
attribute(s) of the files to be found:

        n        Normal file
        r        Read-only file
        h        Hidden file
        s        System file



p101

© Zentel Telecom Ltd, 2009

        v        Volume label
        d        Sub-directory
        a        Archive bit set

If  successful,  dir_first  returns  the  file  name  (only  the  name.ext  part,  without  any  preceding
directory path or drive). If the path or file given was not found the return value is "?". 

Return Value:
Returns "?" or the file name found or a negative error code. 

-o-

sys_dirnext
Synopsis:
        sys_dirnext()

Arguments:
        None

Description:   Returns the next matching file as given to sys_dirfirst(), or "?" if no further files can
be found or if no valid call has been made to sys_dirfirst(). See description of sys_dirfirst() for an
example.

Return Value:

Returns the next matching file or  "?".

 

-o-

sys_diskfree
Synopsis:
        sys_diskfree(driveID)

Arguments:
        driveID     -  The ID of the drive (0=A:, 1=B: etc)

Description:    Returns  the  amount  of  disk  space  available  on  the  specified  driveID  where
driveID=0 represents A:, driveID=1 represents B: etc 

Return Value:

Returns the amount of space left on the specified disk drive or a negative error value if an invalid
disk is specified.

-o-



p102

© Zentel Telecom Ltd, 2009

sys_fdelete
Synopsis:
        sys_fdelete(filename)
Arguments:
        filename       -   The name of the file to delete.
        
Description:   This function attempts to delete the file specified in filename.

Return Value:
Returns 0 on sucess or a negative error value if the delete fails.

-o-

sys_dirmake
Synopsis:
        sys_dirmake(directory_name)
Arguments:
        directory_name       -   The name of the directory to make

Description:   This function attempts to make the directory_name specified.

Return Value:
Returns 0 on success or a negative error code. 

-o-

sys_gethandle
Synopsis:
        sys_gethandle(file_handle)
Arguments:
        file_handle       -   The file handle 

Description:    This function is used to convert the internal file_handle returned from  sys_fhopen()
into a hex-string representation of the actual operating system handle.     Hex strings are used to
represent  binary  values  as  strings  where  each  byte  of  the  binary  value  is  represented  by  a  two
charater hexidecimal string.

The value returned in this case will be an 8 character hex-string representing the 4 byte Windows
file handle.   

This function is typically used by other DLL libraries to access a real operating system file handle
when passed the internal file handle returned by sys_fhopen().
(For example the function SMplayh(chan,filehandle) in the CXACUDSP library uses this function)

It is unlikely that this funtion will be used from your code.



p103

© Zentel Telecom Ltd, 2009

Return Value:   

Returns the hexidecimal string representation of the actual Window file handle.

-o-

sys_finfo
Synopsis:
        sys_finfo(filename,info_type)
Arguments:
        filename       -   The name of the file to delete.
        info_type      - The type of information to retrieve
Description:    This  function  returns  various  file  system  information  about  the  file  specified  in
filename.     The info_type can be one of the following:

        1        File size
        2        Modified Date YYMMDD
        3        Modified Time HHMMSS
        4        Directory/file ("D" or "F")
        5        Read only? ("Y" or "N")

Return Value:
Returns the specified information or a negative error value 

-o-

Date and Time Functions

sys_date
Synopsis:
        sys_date({long_format_flag})

Arguments:
        long_format_flag         -  if this optional argument is set to a non zero value then date will be
returned in long format (YYYYMMDD)

Description:    This  function  returns  the  current  system  date  in  the  form  YYMMDD  unless  the
optional  long_format_flag  is  set  to  a  non-zero  value  in  which  case  it  will  return  the  date  in
YYYYMMDD format.

Return Value:
Returns the current date.



p104

© Zentel Telecom Ltd, 2009

-o-

sys_time
Synopsis:
        sys_time()

Arguments:
        None

Description:   This function returns the current system time in the form HHMMSS.

Return Value:
Returns the current time.

-o-

sys_ticks
Synopsis:
        sys_date({ms_flag})

Arguments:
        ms_flag         -  if this optional argument is set to a non zero value then the function returns the
number of ticks in millseconds.

Description:   This  function returns the  number of  system ticks  since midnight.   By default  this
returns  the  number  of  BIOS ticks  which  occur  at  a  rate  of  18.2  per  second.      However  if  the
ms_flag argument is set to a non-zero value then this will return the number of ticks in millseconds.

At midnight the number of ticks will reset back to zero so care should be taken when comparing
two tick values that might span midnight.

Return Value:
Returns the number of system ticks since midnight.

-o-

sys_timeadd
Synopsis:
        sys_timeadd(start_date,start_time,seconds)



p105

© Zentel Telecom Ltd, 2009

Arguments:
        start_date         - The starting date (either YYYYMMDD or YYMMDD)
        start_time        - the starting time (HHMMSS)
        seconds          - The number of seconds to add to the start_date and start_time

Description:   This function adds the specified number of seconds to the start_date and start_time
and  returns  a  new  date  and  time  as  a  single  string  with  the  format   YYMMDDHHMMSS  or
YYYYMMDDHHMMSS depending on how the start_date was originally specified.

Return Value:
Returns the new date and time string after adding seconds to the original date and time.

-o-

sys_timesub
Synopsis:
        sys_timesub(start_date,start_time,end_date,end_time)

Arguments:
        start_date         - The starting date (either YYYYMMDD or YYMMDD)
        start_time         - The starting time (HHMMSS)
        end_date           - The starting date (either YYYYMMDD or YYMMDD)
        end_time           - The starting time (HHMMSS)

Description:    This  function  returns  the  number  of  seconds  that  have  elapsed  between  the
start_date and start_time and the end_date and end_time.

Note that a negative value will be returned if the start date and time is later than the end date and
time..

Return Value:
Returns the seconds elapsed between the two dates and times.

-o-

sys_dateadd
Synopsis:
        sys_dateadd(start_date,days)

Arguments:
        start_date         - The starting date (either YYYYMMDD or YYMMDD)
        days                 - The number of days to add

Description:   This function adds the specified number of days to the start_date and returns a new
date in the same format that the original was specified in.

If a negative value is given for days then the returned date will be before the start date specifed.

Return Value:



p106

© Zentel Telecom Ltd, 2009

Returns the new date after adding the specified number of days to the start date.

-o-

sys_tmrstart
Synopsis:
        sys_tmrstart()

Arguments:
        none         

Description:   This  function starts a timer that can then be periodically checked by subsequently
calling sys_tmrsecs().    This timer has a one second resolution.

Return Value:
Returns 0

-o-

sys_tmrsecs
Synopsis:
        sys_tmrsecs()

Arguments:
        none         

Description:   Returns the number of seconds that have elapsed since the last call to sys_tmrstart().

Return Value:
Returns 0

-o-

sys_settime
Synopsis:
        sys_settime(date,time)

Arguments:
        date         - The starting date (either YYYYMMDD or YYMMDD)
        time        - the starting time (HHMMSS)

Description:   This function sets the system date and time to the values specified.

Return Value:
Returns 0 or a negative error code if an invalid date/time is specified.



p107

© Zentel Telecom Ltd, 2009

-o-

sys_datecvt
Synopsis:
        sys_datecvt(date,type)

Arguments:
        date                - The date to convert (YYYYMMDD or YYMMDD)
        type                - How to convert the date (0=day of week, 1=day of year)

Description:   This function converts the specified date into a number that represents either the day
of the week or the day of the year.

If type is set to 0 then the function will return a value that represents the day of the week 0 - 6 for
Sunday - Saturday.

If type is set to 1 then the function will return a number between 0 and 364 (or 365 on a leap year) 
representing the day of the year.

Return Value:
Returns the day of the week or day of the year.

-o-

Other System Functions

sys_exit
Synopsis:
        sys_exit(exit_value)

Arguments:
        exit_value        -  The value which the Telecom Engine will exit with.

Description:   This function will cause the Telecom Engine to quit with the exit code specified by
exit_value.    Note that this is not a graceful shutdown - the system will exit immediately so caution
should be taken when using this call.

Return Value:
none

-o-



p108

© Zentel Telecom Ltd, 2009

sys_getenv
Synopsis:
        sys_getenv(var_name)

Arguments:
        var_name        -  The name of the environment variable to return.

Description:   This  function returns the value of the specified environment variable var_name or
an empty string "" if the variable does not exist.

Return Value:
returns  the  value  of  the  specified  environment  variable  var_name  or  an  empty  string  ""  if  the
variable does not exist.

-o-

Terminal Console Library

Introduction
The Application Terminal Library provides a text based application console based around the
functionality of an old 16 colour VGA graphics monitor.        For critical applications like IVR and
other Telecomunications systems, which typically run without much user interference, a simple text
based console terminal is usually sufficient to show the status of channels and to provide a
scrolling log of events.        A more complex graphical user interface (GUI) is not necessarily
required on the live system (although a GUI interface for managing resources and database tables
from a separate workstation might be required as a separate application).

Thus the Terminal Console Library is offered as part of the standard TE libary set and provides
functions for simple terminal input, output and logging  to offer the above basic functionality.         
When the Terminal Console Library DLL (CXTERMX.DLL) is loaded by the run-time Telecom
Engine, the Application Console window is displayed on the screen that is 80 columns wide by 25
rows high,  however this can be resized (either by the term_resize() function call or by setting some
registry keys).     Below is a screen shot from a typical application terminal screen that might be
used for a running system:



p109

© Zentel Telecom Ltd, 2009

In the above example the top right shows single character channel status for each channel on each
E1 trunk.   Down the right hand side is a  more detailed channel status and additional channel/call
specific information.      The main area rectangular area on the bottom left is the scrolling log
window, showing all calls to the applog(), errlog(), tracelog() and similar functions to display
scrolling messages.

Obviously the programmer is free to design a screen that is suitable for the needs of the application
and may simply consist of a simple black and white scrolling log without any of the above channel
status areas etc.

If an application requires something more sophisticated than a text based terminal window, then the
programmer should consider writing a window GUI application and communicating with their
program using the TCP/IP socket library (CXSOCK.DLL) to receive the appropriate information,
or otherwise another more sophisticate terminal libary could be developed.

The font used by the Application Terminal console is 'Terminal' with character size 10.       This
can be changed by a call to term_resize() or by setting up some entries in the registry.       The
registry information that is used by the library is found under the following registry key:

HKEY_LOCAL_MACHINE\Software\Telecom Engine\CXTERMX

and the entries found under this key are as follows:

SCREEN_HEIGHT - The number of character rows for the terminal screen (Default 25)
SCREEN_WIDTH - The number of character columns for the terminal screen (Default 80)
FONT_SIZE - The size of the font used (Default 10)

Since the application terminal is modelled on an old VGA 16 colour terminal we have the
following 16 colours defined:

Colour ID 24 Bit definition Colour Name VGA Code



p110

© Zentel Telecom Ltd, 2009

CL_BLACK 0x000000 Black 0
CL_BLUE 0xC00000 Blue 1
CL_GREEN 0x00C000 Green 2
CL_CYAN 0xC0C000 Cyan 3
CL_RED 0x0000C0 Red 4
CL_PURP 0xC000C0 Purple 5
CL_BROWN 0x0080C0 Brown 6
CL_WHITE 0xC0C0C0 White 7
CL_GREY 0x808080 Grey 8
CL_B_BLUE 0xFF4040 Bright Blue 9
CL_B_GREEN 0x00FF00 Bright Green 10
CL_B_BLUE 0xFFFF00 Bright Blue 11
CL_B_RED 0x0000FF Bright Red 12
CL_B_PURP 0xFF00FF Bright Purple 13
CL_B_YELLOW 0x00FFFF Bright Yellow 14
CL_B_WHITE 0xFFFFFF Bright White 15

The following program prints out the 16 colours used by the application terminal libary:

const CL_BLACK =0;

const CL_BLUE =1;

const CL_GREEN =2;

const CL_CYAN =3;

const CL_RED =4;

const CL_PURP =5;

const CL_BROWN =6;

const CL_WHITE =7;

const CL_GREY =8;

const CL_B_BLUE=9;

const CL_B_GREEN=10;

const CL_B_BLUE=11;

const CL_B_RED =12;

const CL_B_PURP=13;

const CL_B_YELLOW=14;

const CL_B_WHITE=15;

main

    int i;

    term_set_attr(CL_B_WHITE,CL_BLACK);

    term_clear();

    for(i=0;i<=15;i++)

        term_cur_pos(5+i,10);

        term_set_attr(CL_WHITE,CL_BLACK);

        switch(i)

           case 0:         term_print("Black      : ");

           case 1:         term_print("Blue       : ");

           case 2:         term_print("Green      : ");

           case 3:         term_print("Cyan       : ");



p111

© Zentel Telecom Ltd, 2009

           case 4:         term_print("Red        : ");

           case 5:         term_print("Purple     : ");

           case 6:         term_print("Brown      : ");

           case 7:         term_print("White      : ");

           case 8:         term_print("Grey       : ");

           case 9:         term_print("Br. Blue   : ");

           case 10:        term_print("Br. Green  : ");

           case 11:        term_print("Br. Blue   : ");

           case 12:        term_print("Br. Red    : ");

           case 13:        term_print("Br. Purple : ");

           case 14:        term_print("Br. Yellow : ");

           case 15:        term_print("Br. White  : ");

        endswitch

        term_set_attr(i,i);

        term_cur_pos(5+i,22);

        term_print("                                      ");

    endfor

endmain

When this program is run the following output is displayed on the terminal screen:

-o-

Terminal Console Library Quick Reference
applog(str1[,str2],...]]);
syslog(str1[,str2],...]]);
errlog(str1[,str2],...]]);
tracelog(str1[,str2[,...]]);
term_log(str1[,str2[,...]]);
term_write(str1[,str2[,...]]);
term_scroll_area(row,column,width,height)



p112

© Zentel Telecom Ltd, 2009

term_cur_pos(row,column);
term_print(str1[,str2[,...]]);
term_box(row,column,width,height)
term_colour(forground,background)/term_colour(user_defined_colout)
term_put_nch(character,number_of_times)
term_fill(row,column,width,height,character)
term_attr_def(attribute_num,fgcolour_24bit,bgcolour_24bit)
term_clear()
term_kbgetx()
term_kbget()
term_kbqsize()
term_errctl(on_off)
term_edit(row, column, width, initial, attribute)
term_resize(rows,columns[,FontSize[,FontName]])
term_size(pRows,pColumns)

-o-

Terminal Console Function Reference

applog
Synopsis:
        applog(string1,[string2[,...]])

Arguments:
        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes the resulting string to the Application Terminal scrolling area.        The function also writes
the log string to the application log file, which resides in the directory where the Telecom Engine
run-time program was started from.        

The  application  log  files  cycle  though  ten  application  logs:   APPLOG0.LOG,
APPLOG1.LOG...APPLOG9.LOG  before  starting  back  at  the  beginning  and  overwriting  the
previous application logs again.     Each application log file  will  reach a maximum size of  2MB
before moving on to the next file - so a total of 20MB of log data will be stored until it starts to get
overwritten.             Upon start-up of the Terminal Console DLL, the last log file that was written
to is located (by modified date) and the next application log file is then used and overwritten.        
Therefore each time the Telecom Engine is started the Terminal Console DLL will start at the next
log file after the last one that was written.      This way a history of log files is maintained which
may be useful for debugging purposes.    If you want to always start at APPLOG0.LOG then you
should delete this log file (say in a batch file) each time the system is restarted.

The log file messages that are written to the application logs have some information prefixed to the
string before writing to the log.       This information has the following format:

<date (YYYYMMDD)>:<time (HHMMSS.ms)>: <Message Type>:<Task_name (Tex file name)>:
<Task ID>: <Program Counter (Hex)>:  string



p113

© Zentel Telecom Ltd, 2009

The <Message Type> Field will be one of the following:

L    - Normal Log message
E    - Error Message
D    - Debug Message
T    - Trace Message

For example in the following program in TES file MYAPP.TES

int a,b;

main

    a=123;

    b=45678;

    applog("The value of a=",a);

    applog("The value of b=",b);

endmain

Would result in something similar to this being written to the application log:

APPLOG0.LOG

20060413:151334.567:L:myapp:0:000a: The value of a=123
20060413:151334.567:L:myapp:0:0023: The value of b=4567

Return Value:
Returns 0

-o-

syslog
Synopsis:
        syslog(string1,[string2[,...]])

Arguments:
        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes  the  resulting  string  to  the  system  log  screen  provided  by  the  front-end  (TEX.EXE)
application .    NOTE that unlike the errlog() and tracelog() functions the message is not copied to
the application terminal or application log.

The system log files (provided by the TEX.EXE front-end application) cycle through just two files
SYSLOG0.LOG and SYSLOG1.LOG.      

Return Value:   
Returns 0



p114

© Zentel Telecom Ltd, 2009

-o-

errlog
Synopsis:
        errlog(string1,[string2[,...]])

Arguments:
        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes the resulting string to the Application Terminal scrolling area in red.      The function also
writes the log string to the application log file and system error file, which resides in the directory
where the Telecom Engine run-time program was started from.

The application log files cycle through files APPLOG0.LOG through to APPLOG9.LOG, whereas
the system error log files (provided by the TEX.EXE front-end application) cycle through just two
files ERRLOG0.LOG and ERRLOG1.LOG.      See applog() for a description of the application log
format.

Return Value:   
Returns 0

-o-

tracelog
Synopsis:
        tracelog(string1,[string2[,...]])

Arguments:
        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes the resulting string to the Application Terminal scrolling area in yellow.      The function
also  writes  the  log  string  to  the  application  log  file  and  system  trace  file,  which  resides  in  the
directory where the Telecom Engine run-time program was started from.

The application log files cycle through files APPLOG0.LOG through to APPLOG9.LOG, whereas
the system trace log files (provided by the TEX.EXE front-end application) cycle through just two
files  TRACELOG0.LOG  and  TRACELOG1.LOG.       See  applog()  for  a  description  of  the
application log format.

Return Value:   
Returns 0

-o-

term_errctl



p115

© Zentel Telecom Ltd, 2009

Synopsis:
        term_errctl(off_or_on_)

Arguments:
        off_or_on         - Set to 0 to turn error supress off, or 1 to turn error supress on.

Description:   This function allows the application to suppress the printing of error messages to the
error log and application log.    This  is  typically used when the programmer knows that  an error
message  might  be  generated  but  this  would  be  an  expected  behaviour  that  doesn't  need  to  be
printed to the log.           A typical example of when term_errctl() could be used to suppress an error
message is shown below:

   # Check if the control file exists..
   term_errctl(1);     # Prevent 'file not found' error message from printing..
   fh=sys_fhopen("control.txt","rs");
   term_errctl(0);     # switch error suppression off again
   
   # if it does exist then do something
   if(fh > 0)
       sys_fhclose(fh);
       # Do something....
       etc.
    endif

In the above example we are checking for the existance or non-existance of a control file to adjust
the program flow.    Since the non-existance of the file is a perfectly valid event then we don't want
to print out the 'file not found' error that the sys_fhopen() would print out.

Another example is shown below:

      term_errctl(1);    # Suppress error messages
      SMplay(vox_chan,"advert.vox");     # play the optional advert if it exists
      term_errctrl(0);   # allow error logging again

In the  above example  the  program attempts  to  play 'advert.vox',  but  if  this  doesn't  exist  then  the
program will simply return immediately and drop through.          Since the 'advert.vox' is an option
prompt then we supress the printing of the 'file not found' mesage that SMplay() would normally
generate.

Return Value:   Returns 0

-o-

term_log
Synopsis:
        term_log(string1,[string2[,...]])

Arguments:



p116

© Zentel Telecom Ltd, 2009

        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes  the  resulting string to  the  Application Terminal  scrolling area and application  log  file.     
This function is identical to the applog() function.

Return Value:   
Returns 0

-o-

term_resize
Synopsis:
   term_resize(rows,columns[,FontSize[,FontName]])

Arguments:
   rows - The number of rows high the terminal window should be
   columns - The number of columns wide the terminal window should be
   FontSize - The font size of the text (def
   FontName - The Name of the font to use (defaults to Terminal)

Description:      This function allows the size of the Application Terminal window to be changed
and/or the character font or font size to be changed.      The number of rows and columns specified
are  the  number  of  character  rows  and  columns,  so  the  actual  window  size  will  depend  on  the
FontName and FontSize used.     By default the FontName is "terminal" and the FontSize is 10.

Return Value:
Returns 0 on success or -1 if an invalid argument is supplied.

-o-

term_size
Synopsis:
        term_size(&pRows,&pColumns)

Arguments:
        pRow -  Pointer  to  a  variable  that  will  hold  the  number  of  rows  of  the  application  terminal
window

pColumn -  Pointer  to  a  variable  that  will  hold  the  number  of  columns  of  the  application
terminal window

Description:    This  function  returns  the  current  size  of  the  application  terminal  window.     By
default the terminal window will be 25  rows high by 80 columns wide,  but this can be changed by
the registry variables or by calling the term_resize() function.      The number of rows and columns
are written to the variables pointed to by the



p117

© Zentel Telecom Ltd, 2009

Return Value:   
Returns 0

-o-

term_write
Synopsis:
        term_write(string1,[string2],...]])

Arguments:
        string1,string2...         - The string arguments provided are concatenated together for form the
final log string.

Description:   This function concatenates the string arguments passed to it into a single string and
writes the resulting string to the Application Terminal scrolling area, but does NOT write the string
to the application log file.     

Return Value:   
Returns 0

-o-

term_scroll_area
Synopsis:
        term_scroll_area(row,column,width,height)

Arguments:
    row        -  The top left row of the scroll area
    column   -  The top left column of the scroll area
    width      -  The width of the scroll area
    height     -  The height of the scroll area

Description:   This function defines the scrolling area of the Application Terminal where strings
are  written  from calls  to  term_write(),  applog(),  errlor()  etc.     By default  the  entire  Application
Terminal window is the scrolling area until a call is made to this function to modify it.

Return Value:   
Returns 0 or -1 if an invalid scroll area is defined.

-o-

term_cur_pos
Synopsis:
        term_cur_pos(row,column)



p118

© Zentel Telecom Ltd, 2009

Arguments:
    row        -  The row position to set the cursor
    column   -  The column to set the cursor to 

Description:   This function moves the task  specific  cursor  to  the  position  specified by row and
column.     Any subsequent term_print() function will begin from the position specified by this call.
     The top left row of the application terminal is row 0, column 0.

Note that after a term_print() function call  the cursor position does not  change.   Another call  to
term_cur_pos() is needed to change the cursor position.

The cursor position of other task's cursors will not be affected by this call.

Returns: 0 for success or -1 for error (e.g attempt to postion cursor off screen)

-o-

term_print
Synopsis:
        term_print(string1,[string2[,...]]))

Arguments:
     string1,string2...         - The string arguments provided are concatenated together for form the
final string to print to the screen.

Description:   This function prints the given strings to the application terminal at the current cursor
position.       The cursor position remains unchanged after a call to term_print() and to move it will
require an explicit call to term_cur_pos().

Returns: 0 for success or -1 for error 

-o-

term_box
Synopsis:
        term_box(row, column, width, height)

Arguments:
    row        -  The top left row of the scroll area
    column   -  The top left column of the scroll area
    width      -  The width of the box
    height     -  The height of the box

Description:  This function  draws a rectangular box bounded by double lines and blanks out the
interiior of the rectangle.   
The width  and height  include the  border,  so  the  blanked area is  (height  -  2)  lines  by (width  -  2)



p119

© Zentel Telecom Ltd, 2009

columns.   The border and interior blanks are written with the current terminal attributes set by the
term_set_attr() function . 

Returns:  Empty string ("")

-o-

term_colour
Synopsis:
        term_colour(foreground,background)
or
        term_colour(user_defined_colour)

Arguments:
        Foreground - The foreground colour (0..15)

background- the background colout (0..15)

or

user_defined_atrribute  -  One  of  the  256  colour  attributes  that  can  be  defined  by  the  user
using term_attr_def()

Description:   This function sets the current foreground and background colours used by the task in
subsequent calls to terminal output functions (such as term_print(), term_write, applog() etc).         
  

The  function  can  take  one  of  two  forms,   the  first  of  which  specifies  the  foreground  and
background colours from the  predefined set  of  colours  shown below (foreground and backTaken
from the Colour code column):

Colour Name Colour Code
Black 0
Blue 1
Green 2
Cyan 3
Red 4
Purple 5
Brown 6
White 7
Grey 8
Bright Blue 9
Bright Green 10
Bright Blue 11
Bright Red 12



p120

© Zentel Telecom Ltd, 2009

Bright Purple 13
Bright Yellow 14
Bright White 15

The  second  form  of  the  function  takes  one  of  the  256  user  defined  colour  attribute  that  can  be
defined by the term_attr_def() function.     A colour attribute is a number between 0 and 255 and
which indexes a table that provides both the foreground and background colour for that attribute.   
    Typically  this  form  of  the  function  is  used  to  allow  colour  combinations  outside  of  the
predefined colours defined in the above table.

Return Value:   Returns 0 or a negative error value (e.g if an invalid colour is given).

-o-

term_attr_def
Synopsis:
        term_attr_def(attribute_id,fgcolour_24bit,bgcolour_24bit)
or
        term_attr_def(attribute_id,VGA_256code)

Arguments:
atrribute_id - The atrribute ID for the define colour attribute (0..255)

        fgcolour_24bit - The foreground colour (0..15)
bgcolour_24bit - The background colout (0..15)

or
atrribute_id - The atrribute ID for the define colour attribute (0..255)
VGA_256code -  A  VGA  colour  code  made  from  a  combination  of  one  of  the

existing 16 predefined colours

Description:   This function allows for one of up to 256 colour attributes to be defined by the user
for use with the term_colour(user_defined_attribute) function.       A colour attribute is  an index
into table of up to 256 entries which defines both the foreground and background colour in a single
attribute ID.       This attribute ID can then be passed to the term_colour(attributeID) function to
define the current foreground and background colour.

The first form of the function allows for new colours to be defined that are not a combination of
any of the 16 predefined colours.      In this form the function takes the attribute_id and the 24 bit
colour  value  for  the  new  foreground  and  background  in  the  fgcolour_24bit  and  bgcolour_24bit
arguments.      

For example, the following program defines in turn 64 different shades of red, green and blue on
white (in attributes 0..63) and uses these new attributes to display 64 characters on the screen:

const CL_RED=0x0000FF;

const CL_WHITE=0xFFFFFF;

const CL_16_WHITE=7;

const CL_16_BLACK=0;



p121

© Zentel Telecom Ltd, 2009

main

    int i;

    # Define 64 new shades of Red on white

    for(i=0;i<64;i++)

        vid_attr_def(i,CL_RED-(i*4),CL_WHITE);

    endfor

    // Set the colour to white on black

    term_colour(CL_16_WHITE,CL_16_BLACK);    

    term_cur_pos(5,0);

    term_print("New Reds   : ");

    // Now print out 64 characters using the new colour attributes (0..63)

    for(i=0;i<64;i++)

        term_cur_pos(5,13+i);

        // Set the colour to one of the new user defined colours

        term_colour(i);

        term_print("X");

    endfor

    # Define 64 new shades of Green on white

    for(i=0;i<64;i++)

        // Multiple by 256 to shift into Green bits of colour field (0x00FF00)

        vid_attr_def(i,256*(CL_RED-(i*4)),CL_WHITE);

    endfor

    // Set the colour to white on black

    term_colour(CL_16_WHITE,CL_16_BLACK);    

    term_cur_pos(7,0);

    term_print("New Greens : ");

    // Now print out 64 characters using the new colour attributes (0..63)

    for(i=0;i<64;i++)

        term_cur_pos(7,13+i);

        // Set the colour to one of the new user defined colours

        term_colour(i);

        term_print("X");

    endfor

    # Define 64 new shades of Blue on white

    for(i=0;i<64;i++)

        // Multiple by 256*256 to shift into Blue bits of colour field (0xFF0000)

        vid_attr_def(i,256*256*(0xFF-(i*4)),CL_WHITE);

    endfor

    // Set the colour to white on black

    term_colour(CL_16_WHITE,CL_16_BLACK);    

    term_cur_pos(9,0);

    term_print("New Blues  : ");

    // Now print out 64 characters using the new colour attributes (0..63)

    for(i=0;i<64;i++)

        term_cur_pos(9,13+i);

        // Set the colour to one of the new user defined colours

        term_colour(i);

        term_print("X");

    endfor

endmain



p122

© Zentel Telecom Ltd, 2009

The output from the above program is shown below:

                 

The second form of the function:     

        term_attr_def(attribute_id,VGA_256code)

Allows an attribute to be defined which is a combination of two of the existing predefined colours.
    The  VGA_256code  is  a  number  between  0  and  255  created  from  the  following  formula:     
VGA_256code=16 * Background + Foreground

Where  the  Background and  Foreground  colours  are  taken  from  the  set  of  16  predefined  colours
shown in the following table.

Colour Name Colour Code
Black 0
Blue 1
Green 2
Cyan 3
Red 4
Purple 5
Brown 6
White 7
Grey 8
Bright Blue 9
Bright Green 10
Bright Blue 11



p123

© Zentel Telecom Ltd, 2009

Bright Red 12
Bright Purple 13
Bright Yellow 14
Bright White 15

Below is  an example showing attribute ID 1 being set  to  white on cyan from the existing colour
set..

// White on Cyan from the existing colour set

term_attr_def(1,7*16+3);

// Change to the new colour..

term_colour(1);

-o-

term_put_nch
Synopsis:
        term_put_nch(character, number_of_times)

Arguments:
character         - The character to write
number_of_times - the number of times to write the character

Description:    This  function  writes  the  specified  character  to  the  screen  at  the  current  cursor
position  the  given  number_of_times.        The  cursor  position  remains  unchanged after  a  call  to
term_put_nch() and to move it will require an explicit call to term_cur_pos().

The characters are written in the current active colour for the task as set by term_colour().

Returns: 0 for success or -1 for error 

-o-

term_fill
Synopsis:
        term_fill(row, column, width, height, character)

Arguments:
          row - 

character         - The character to write
number_of_times - the number of times to write the character

Description:   This function fills  the given rectangular area with the first  character  in  the string
argument using the current active terminal colour for the task (as set by term_colour()).       The
row and column arguments define the  top  left  position  of  the  rectangular area and the  width  and



p124

© Zentel Telecom Ltd, 2009

height arguments define the number of characters across and down to draw the rectangle.

Row and column numbers count from (0,0) at the top left corner of the screen.

The characters are written in the current active colour for the task as set by term_colour().

The following example loops drawing concentric rectangles of different colours:

main

int colour;

    # Loop forever..

    while(1)

        for(colour=1;colour<=12;colour++)

             # Set colour to colour on black..

             term_colour(colour,0);

             # Fills a rectangle 2 chars smaller that the current colour

             term_fill(0+colour,0+(colour*2),80-(colour*4),25-colour*2,"X");     

             # Sleep half a second

             sleep(5);

        endfor

    endwhile

end

Returns: 0 for success or -1 for error 

-o-

term_clear
Synopsis:
        term_clear()

Arguments:
NONE

Description:   This function clears the current terminal screen and writes spaces to every character
location on the screen using the current task's colour as specified by term_colour().

The following code causes the application terminal screen to change colour rapidly..

main

int colour;

    while(1)

        for(colour=0;colour<16;colour++)

             // Set colour 

             term_colour(colour,colour);

             // Fills a rectangle 2 chars smaller that the current colour

             term_clear();     

             // Sleep half a second

             sleep(5);

        endfor

    endwhile

end



p125

© Zentel Telecom Ltd, 2009

Return Value:   Returns 0

-o-

term_kbget
Synopsis:
        key=term_kbget()

Arguments:
NONE

Description:    This  function  suspends  the  calling  task  until  a  key  has  been  hit  and  returns  the
ASCII value of the key that was pressed.   If there are already one or more keys in the keyboard
buffer  then  this  function  will  return  immediately  with  the  ASCII  value  of  the  first  key  in  the
keyboard buffer and will remove that key from the buffer.              

Only one task can be calling term_kbget() or term_kbgetx() at any one time.     If there is already a
task waiting for a key press with this function then any other tasks calling this function will cause
the function to display an error message and a blank string ("") will be returned.

It  is  possible  to  obtain  the  number  of  keys  waiting  in  the  keyboard  buffer  by  calling  the
term_kbqsize() function.

A maximum of 256 keys can be held in the keyboard buffer before they start being overwritten.

Returns:  Returns a string containing the string that was pressed.

-o-

term_kbgetx
Synopsis:
        key=term_kbgetx()

Arguments:
NONE

Description:   This function suspends the calling task until a key has been hit and returns the four
digit scan code of the key that was pressed.   If there are already one or more keys in the keyboard
buffer  then this  function will  return immediately with  the  scan code value of  the  first  key in  the
keyboard buffer.

The value is NOT removed from the buffer, so repeated calls to term_kbgetx() will continue to give
the same value (if there are type-ahead characters, the returned character is  always the earliest  in
the buffer).   A call to term_kbgetx() will generally be followed by a call to term_kbget() to remove
the keystroke.

Only one task can be calling term_kbget() or term_kbgetx() at any one time.     If there is already a
task  waiting  for  a  key  press  with  these  functions  then  any  other  tasks  calling  this  function  will
cause the function to display an error message and a blank string ("") will be returned.



p126

© Zentel Telecom Ltd, 2009

It  is  possible  to  obtain  the  number  of  keys  waiting  in  the  keyboard  buffer  by  calling  the
term_kbqsize() function.

A maximum of 256 keys can be held in the keyboard buffer before they start being overwritten.

The first two characters of the a scan code indicate which key has been pressed.   The second two
characters indicate the ASCII code (as a hexadecimal number), if any, for the pressed key. 

For example, [Esc] the first key on the keyboard (in the standard IBM layout), and has ASCII code
27 decimal, 1b hexadecimal; hence "011b". Special keys which have no ASCII code have "00" as
the last two characters, for example the function key [F1].

The following tables show the scan codes for the special keys:

Function Keys:

key Scan Code

[F1] 3b00

[F2] 3c00

[F3] 3d00

[F4] 3e00

[F5] 3f00

[F6] 4000

[F7] 4100

[F8] 4200

[F9] 4300

[F10] 4400

[F11],[F12] ignored

Special Keys:

[Enter] 1c0d

[] 4800

[Backspace] 0e08

[] 5000

[Esc] 011b

[] 4d00

[Tab] 0f09

[] 4b00

[Ins] 5200
[PgUp] 4900
[Del] 5300
[PgDn] 5100
[Home] 4700



p127

© Zentel Telecom Ltd, 2009

[End] 4f00
[Ctrl]+[Enter] 1c0a
[Shift]+[Tab] 0f00

[Alt]+Key:

[A] 1e00 [B] 3000 [C] 2e00 [D] 2000
[E] 1200 [F] 2100 [G] 2200 [H] 2300
[I] 1700 [J] 2400 [K] 2500 [L] 2600
[M] 3200 [N] 3100 [O] 1800 [P] 1900
[Q] 1000 [R] 1300 [S] 1f00 [T] 1400
[U] 1600 [V] 1f00 [W] 1100 [X] 2d00
[Y] 1500 [Z] 2c00 [1] 7800 [2] 7900
[3] 7a00 [4] 7b00 [5] 7c00 [6] 7d00
[7] 7e00 [8] 7f00 [9] 8000 [0] 8100
[-] 0c00 [=] 0d00

The following program prints out the scan codes for each key:

main

var scan:4;

var ch:1;

    while(1)

         scan=kb_getx();

         ch=kb_get();          

         applog("Scab=",scan," ch=",ch);

    endwhile

endmain

Returns:  Returns a string containing the scan code of the key that was pressed.

-o-

term_kbqsize
Synopsis:
        key_count=term_kbqsize()

Arguments:
NONE

Description:   This function returns the number of keys that are waiting in the keypress buffer.    
A maximum of 256 keys will be stored in the buffer after which they will start to be overwritten.    
       Keys are removed from the buffer by calls to term_kbget() or term_kbedit().



p128

© Zentel Telecom Ltd, 2009

-o-

term_edit
Synopsis:

input_string = term_kbedit(row, column, width, initial_str[, attribute]);

Arguments:
row - The row where the edit will start
column - The column where the edit will start
width - The number of characters to get
initial_str - The initial value of the edit string
[attribute] - Option attribute ID (as defined by term_attr_def())

Description:   This function allows for string input to be obtained from the keyboard.   The calling
task will be suspended while the input is being entered and will only return when one of the input
termination keys is pressed.       Only one task at a time can be calling a blocking keyboard input
function so if any other task is currently executing term_kbget(), term_kbgetx() or term_kbedit()
then the function will return immediately with a bloank string and will output an error message

The editing area on the screen is defined by the row, column and width arguments and the 
initial_str value will be displayed in this area when the function is first called with the cursor
positioned at the end for the initial_str.                 

Editing keys are the following:

[Enter]   - Terminates the input and returns the edited string
[Esc]     - Aborts the edit and returns the initial string
[Backspace] - Deletes the character at the previous position 
[Del] - Deletes the character at the current position
[] [] - Moves the cursor left or right through the editing string.

If any other special (non-ascii key) is pressed then this will terminate the edit as if Enter had been
pressed.     

Note:  The key that terminated the input is not returned with the input string and is left in the
keyboard buffer.     This key nust then be removed from the keyboard buffer using term_kbget()
before term_kbedit() is called again (otherwise the next and subsequent calls to term_kbedit() will
return immediately as though enter had been hit).          This is a common cause of bugs when using
this function.

Below is an example program which loops continuously returning input from the term_kbedit()
function and printing the returned string to the scrolling log area:

main

   var input_str:60;

   term_box(5,0,80,20);

   term_scroll_area(6,1,78,18);

   term_cur_pos(3,0);

   term_print("Enter a string:");



p129

© Zentel Telecom Ltd, 2009

   while(1) 

       input_str=term_kbedit(3,16,50,"This is the initial value");

       term_kbget();

       applog("Input=",input_str);

   endwhile

endmain

-o-

ActiveX Data Ojects (ADO) Database Library

Introduction
The ActiveX Data Object (ADO) Library (CXADO.DLL) provides an easy-to-use, be a high-level
interface to provide ease of access to data stored in a wide variety of database sources.   ADO is a
Microsoft technology which stands for ActiveX Data Objects ADO and is a Microsoft Active-X
component.   The CXADO Libary provides a layer of abstraction between your application and the
low-level OLE DB interfaces so that data access can be acheived without having to learn the
intricacies of COM or OLE DB.

The current version of the CXADO.DLL library provides the functions that allow a Telecom
Engine to establish connections to various database sources and then to excecute queries and
commands (including invoking stored procedures) against the tables using Standard Query
Language (SQL) statements and to browse and manipulate the returned recordsets.

Not all of the functionality of the ADO is exposed by the CXADO library, but the functions that are
provided should provide the mechanisms needed for the vast majority of applications.          If any
additional functionality is required that is not currently supported by the CXADO.DLL library
(suchs as streams,   stored procedures that return multiple datasets etc.) then it is suggested that the
developer write their own middleware application in the language of their choice and communicate
with that using a client-server model using the CXSOCKETS.DLL libary.

The entire CXADO.DLL library is implemented using just two ADO objects:   The Connection
object and the Recordset object.
Represents a unique session with a data source. In the case of a client/server database system, it
may be equivalent to an actual network connection to the server. 

An ADO Connection object represents a unique session with a data source, including a DBMS, a
file store, or a comma-delimited text file. In the case of a client/server database system, the ADO
connection can be an actual network connection to the server.    Data providers represent diverse
sources of data such as SQL databases, indexed-sequential files, spreadsheets, document stores, and
mail files. Providers expose data uniformly using a common abstraction called the rowset.

ADO is powerful and flexible because it can connect to any of several different data providers and
still expose the same programming model, regardless of the specific features of any given provider.
However, because each data provider is unique, how your application interacts with ADO will vary
by data provider.

Under the CXADO.DLL library, commands and queries are not executed through the connection
object itself (which is possible under ADO), instead all commands and queries must be executed



p130

© Zentel Telecom Ltd, 2009

through a Recordset object.          Some SQL queries return data as a set of rows in a table (E.g.
SELECT query),  whereas other queries excecute commands that do not return data (such as the
CREATE TABLE query).        The CXADO.DLL library provides functions that enable both types
of queries to be executed on a Recordset object.

The ADO Command object is currently not implemented by the library as most functionality can
be acheived through executing commands through the Recordset object (except for executing
stored procedures that return multiple recordsets, or that return both recordsets and parameter
values).        Note that the Command object may be implemented in future versions if there is a
pressing need for it.

-o-

Some Simple Examples
The best way to get a feel for the capabilities of the library is to provide some simple examples.

In the following code a connection is established to an ODBC provider which establishes a
connection to a remote datasource.      This example assumes that  ODBC has configuration has
been configured to provide a Data Source Name (DSN) called MyDSN which connects to the
database server.    This server could be MS-SQL, Oracle, MySQL, PostGres (or whatever).       All
connections are made using 'Connection Strings' which will vary from provider to provider,  and an
understanding of what the provider requires in this connection string will be needed by the
programmer.

Once the connection has been established then the program excecutes a simple query on the
database by creating a recordset object then opening the object with an SQL query string.    In this
case it assumes there is a table called 'billing' that has the columns:
'date','time','duration','telno','rate','cost'.      

The program then steps through the returned recordset data using the cursor manipulation functions
(adoRSetMoveFirst(), adoRSetMoveNext() etc),  and prints out the values of the various fields,  
before closing the recordset and the connection.

The code is as follows:

// This include file is provided with the libary and contains standard constant definitions.

$include "ado.inc"

main

    int conHandle;

    int setHanldle;

    int x;

    // Turn on trace of ado function entry, function exit and events



p131

© Zentel Telecom Ltd, 2009

    adoTrace(1);

    // Get a private adoConnection object handle (named "MyConn")

    conHandle=adoConnection("MyConn",0);

    if(conHandle < 0)

         errlog("Error getting connection handle...err=",conHandle);

         stop;

    endif

    // Open the connection... 

    x=adoConnOpen(conHandle,"","","Provider=MSDASQL.1;Password=admin;User ID=postgres;Data

Source=MyDSN");

    if(x < 0)

        errlog("Error opening connection...err=",x);

        stop;

    endif

    // Now get a private adRecordset object (named "MySet")

    voslog("About to get adoRecordset() handle...");

    setHandle=adoRecordset(conHandle,"MySet",0);

    if(setHandle < 0)

         errlog("Error getting recordset handle...error=",setHandle);

         stop;

    else

    // Now execute a query on the recordset

    x=adoRSetQuery(setHandle,adOpenStatic,adLockReadOnly,adCmdText,"select * from billing where cost

> 1.0");

    if(x < 0)

        errlog("Error executing query...err=",x);

        stop;

    endif

    // Move to first record (this is done implicitly by the adoRSetQuery() .. but lets make it explicit for the

example..)

    // ... now that the query has completed successfully, to stop the example growing too long I have stopped

checking 

    //         errors for every ado call (although in your application you should really keep checking for errors..)

    adoRSetMovefirst(setHandle);

    // If we get here then the query complete sucessfully...

    while(not adoRSetEOF(setHandle))

         var date:20,time:20,duration:10,cost:10,telno:50;

         adoFldGetValue(setHandle,"date",&date);

         adoFldGetValue(setHandle,"time",&time);

         adoFldGetValue(setHandle,"duration",&duration);

         adoFldGetValue(setHandle,"telno",&telno);

         adoFldGetValue(setHandle,"cost",&cost);

 

        applog("Date=",date," Time=",time," Dur=",duration," Telno=",telno," cost=",cost);

        

         // MoveNext

         adoRSetMovefirst(setHandle);

    endwhile

    adoRSetClose(setHandle);

    adoConnClose(contHandle);

endmain

In the following example I create a table called 'billing' using the adoRSetCmd() function...

// This include file is provided with the libary and contains standard constant definitions.



p132

© Zentel Telecom Ltd, 2009

$include "ado.inc"

main

    int conHandle;

    int setHanldle;

    int x;

    // Turn on trace of ado function entry, function exit and events

    adoTrace(1);

    // Get a private adoConnection object handle (named "MyConn")

    conHandle=adoConnection("MyConn",0);

    if(conHandle < 0)

         errlog("Error getting connection handle...err=",conHandle);

         stop;

    endif

    // Open the connection... 

    x=adoConnOpen(conHandle,"","","Provider=MSDASQL.1;Password=admin;User ID=postgres;Data

Source=MyDSN");

    if(x < 0)

        errlog("Error opening connection...err=",x);

        stop;

    endif

    // Now get a private adRecordset object (named "MySet")

    voslog("About to get adoRecordset() handle...");

    setHandle=adoRecordset(conHandle,"MySet",0);

    if(setHandle < 0)

         errlog("Error getting recordset handle...error=",setHandle);

         stop;

    else

create table customers (Name Text,Balance Float,DOB Date)");

    // Now execute a query on the recordset

    x=adoRSetCmd(setHandle,adOpenStatic,adLockReadOnly,adCmdText,"create table billing (date Date,

time Time, duration Integer, telno Text, cost Float");

    if(x < 0)

        errlog("Error executing command...err=",x);

        stop;

    endif

    applog("Billing table has been created successfully!");

    adoRSetClose(setHandle);

    adoConnClose(contHandle);

endmain

There is  a subtle difference between the adoRSetQuery() and adoRSetCmd() functions in how the
ado events are handled in order to wake up the calling task after the function completes (this only
applies in blocking mode (see adBlockMode() function )).    

For  adoRSetQuery() calls the CXADO.DLL libary ignores the ExecuteComplete Event (which
always occurs first even on a query that returns data) and instead waits for the FetchComplete
event before waking up the calling task.    The FetchComplete event only triggers on recordsets
that return one or more rows of data.     Therefore if a query is executed using the adoRSetQuery()
function that does not return any rows of data, then the FetchComplete event will not be triggered
and so the task will stay blocked indefinitely.     If we tried to wakeup a call to adoRSetQuery()
using the ExecuteComplete event then any attempt to access the rows of data after it returns are
prone to generate errors since the recordset has not completed fetching all of the rows.



p133

© Zentel Telecom Ltd, 2009

In the case of the adoRSetCmd(), the calling task will be woken up as soon as the 
ExecuteComplete event is triggered.            

It is possible to carry out a query that returns data using the adoRSetCmd() function,  but the
application would need to poll the recordset state using the adoRSetState() function to wait for the
data to be fully fetched before trying to access it.          Similarly one could carry out a query that
doesn't return any data using the adoRSetQuery() function so long as non-blocking mode is used
(see adoBlockMode() ) and the application polls to wait for the execution to complete using the
adoRSetState() function.

-o-

Blocking or non-blocking mode
The functions adoConnOpen(),  adoRSetQuery() and adoRSetCmd() are executed Asynchronously
by the CXADO.DLL libary and can be called in blocking or non-blocking mode.

In blocking mode, the task will block until the appropriate event has been triggered in the libary,
after which the task will be woken up and the function will return with an appropriate error code.

In non-blocking mode the function will always return immediately and it is up to the application to
poll the state of the connection or recordset to determine when the execution of the connection or
query has completed (see adoConnState(), adoRSetState()).

To change the state of a task to non-blocking mode then call the adoBlockMode(blocking_flag)
function.     Set the blocking_flag argument to 0 for blocking mode and a non-zero value for
non-blocking mode.     By default a task will start in blocking mode.

-o-

Performance and blocking calls
Every attempt has been made to ensure that all function calls are made aynchronously and that
control is returned to the Telecom engine Scheduler as quickly as possible.      However, even
though all connection opens and recordset queries are specified to be carried out asynchronously,
the various calls still seem to block briefly.                  The adoConnOpen(), adoRSetQuery() and
adoRSetCmd() functions can block for something in the order of 100 - 200ms on a local area
network before returning control back to the calling task.           This may seem a fairly short time, 
but considering that the Telecom Engine task scheduler will swap tasks at a rate of many tens of
thousands of times per second, then this delay can cause a significant performance drop if many
tasks are attempting connections or queries at the same time.

A solution is to establish all connections at start-up and try to limit the number of queries being
made by the application (do not poll continuously on a database without a significant delay
between polls for example).       Alternatively the use of stored procedures should increase the
performance of queries,  and it might be useful to carry out performance tests on a datasource to
understand where performance problems may arise.

The adoTrace() function allows for tracing of the entry and exit points of all ado functions and this



p134

© Zentel Telecom Ltd, 2009

also provides information about how long the function took to complete (in ms).       Note that the
time shown by the trace will be the time taken to execute the actual ado command and not the time
it took for the complete asyncronous action to complete.

For example the following trace is taken from a call to adoConnOpen():

20090218 135453.162 Task 0000 adoConnOpen() [Entry]

20090218 135453.162 About to Connect open Provider=MSDASQL.1;Password=admin;User

ID=postgres;Data Source=MyDSN

20090218 135453.162 Marking connection 0 STATE_PENDING

20090218 135453.363 Task 0000 adoConnOpen() [Exit]: Returns 0: Function took 203ms

Even though the adoConnOpen() function is still blocking waiting for the ConnectionComplete
event to be triggered it can be seen that the underlying _ConnectionPtr->Open() function took
203ms to complete (even though adAsyncConnect is automatically specified in the options for the
Open() call).            Later in the same trace log one can see the ConnectionComplete event
triggered which wakes up the calling task some 352ms later:

20090218 135453.715 EVENT (CONNECTION) CONNECTCOMPLETE:  TaskID=0  handle=0  status=1

20090218 135453.715 Marking connection 0 STATE_OPEN

Similarly in the trace below for an adoRSetQuery() call which attempts to select all the records
from the billing table (>9000), the initial call to adoRSetQuery() takes 74ms,   which is actually
quite quick and would not present a great deal of problems performance-wise as long as there
wasn't a continous loop calling these queries very frequently:

20090218 135453.723 Task 0000 adoRSetQuery() [Entry]

20090218 135453.724 About to RSet query select * from billing

20090218 135453.724 Marking recordset 0 PENDING

20090218 135453.795 Task 0000 adoRSetQuery() [Exit]: Returns 0: Function took 74ms

20090218 135516.059 EVENT (CONNECTION) EXECUTECOMPLETE:  TaskID=0  handle=0  status=1

20090218 135536.059 EVENT (RECORDSET) FETCHCOMPLETE:  TaskID=0  handle=0  status=1

20090218 135536.060 Marking recordset 0 STATE_OPEN

The actual query took quite a long time since it selected all records from the billing table which
contained about 9000 records.   
Notice that the adoRSetQuery() triggers two events.    First the ExecuteComplete event is
triggered first after about 23 seconds (which is ignored because this is an adoRSetQuery() call),  
then the FetchComplete is triggered 20 seconds later which is the one we are actually interested in
and which wakes up the calling task.

An understanding of the trace output will be helpful in identifying potential performance issues and
designing appropriate mechanisms to ensure that they don't effect the running of the system.     Be
aware that different providers function in different and unpredictable ways and it might be
necessary to experiment with the ADO library function calls to understand the behavior fully,,

-o-

Private and Public Objects
Both connection and recordset objects can be created either as private or public objects.            If a



p135

© Zentel Telecom Ltd, 2009

task creates a private object then the created object is only accessible from that task.    If any other
task attempts to access the object then the function will generate an error.

The connection and recordset objects are created with the following functions:

conHandle=adoConnection([name[,priv_or_pub]]);
setHandle=adoRecordSet(conHandle[,name[,priv_or_pub]]);

If a task ends by encountering a stop or restart statement, or by chaining to another task, or by
reaching the end of the program statements, or by an explicit kill command, thenany private objects
that the task has created will be closed and released.

Public objects created by a task can be accessed by any other task,  and if the creating task ends the
object is not closed or released.

It is a good idea to give names to public objects so that other tasks can obtain the handle to that
object through the adoConnGetHandle(name) or adoRSetGetHandle(name) functions.

There are two constants defined in the ado.inc file for the private or public types which can be used
in the above functions as follows:

## Private and public type constants

const TYPE_PRIVATE = 0;

const TYPE_PUBLIC = 1;

-o-

Error Codes
The CXADO.DLL library functions typically return one of the internal error values as defined in
ADO.INC.        These are defined as follows:

const ADOERR_NRARGS    ="-1";        # Bad number of arguments passed to the function

const ADOERR_BADPARM   ="-2"; # One of the arguments passed to the function was invalid

const ADOERR_TOOMANY   ="-3"; # Exceeded the maximum number of concurrently open

connection or recordset handles

const ADOERR_ALLOC     ="-4"; # Memory allocation error (out of memory)

const ADOERR_NAMEDUP   ="-5"; # Name has already been used for connection or recordset

const ADOERR_TOOLONG   ="-6"; # Query/command/connection string exceeded the limit of

2047 characters

const ADOERR_CMDCLASH  ="-7"; # Attempt to execute a command whilst another asyncronous

command is in progress

const ADOERR_NOTOWNER  ="-8"; # Attempt to access a private connection or recordset handle

const ADOERR_INVLDNAME ="-9";        # Named connection or recordset not found 

const ADOERR_BADHANDLE ="-10";     # Invalid connection or recordset handle 

const ADOERR_NOTREADY  ="-11";       #  Attempt to execute a function on an unopened connection or

recordset

const ADOERR_COMERR    ="-12";       #  An ADO error occurred access adoLastError() to obtain error

value

If the function returns the code ADOERR_COMERR then the underlying ADO error value is
stored in the task structure for the task that made the original call and can be obtained through the 
adoLastError() function.



p136

© Zentel Telecom Ltd, 2009

adErrBoundToCommand 3707 -2146824581
0x800A0E7B

Cannot change the ActiveConnection
property of a Recordset object that has a
Command object as its source.

adErrCannotComplete 3732 -2146824556
0x800A0E94

Server cannot complete the operation.

adErrCantChangeConnection 3748 -2146824540
0x800A0EA4

Connection was denied. New connection you
requested has different characteristics than
the one already being used.

adErrCantChangeProvider 3220 -2146825068
0X800A0C94

Supplied provider differs from the one
already being used.

adErrCantConvertvalue 3724 -2146824564
0x800A0E8C

Data value cannot be converted for reasons
other than sign mismatch or data overflow.
For example, conversion would have
truncated data.

adErrCantCreate 3725 -2146824563
0x800A0E8D

Data value cannot be set or retrieved
because the field data type was unknown, or
the provider had insufficient resources to
perform the operation.

adErrCatalogNotSet 3747 -2146824541
0x800A0EA3

Operation requires a valid ParentCatalog.

adErrColumnNotOnThisRow 3726 -2146824562
0x800A0E8E

Record does not contain this field.

adErrDataConversion 3421 -2146824867
0x800A0D5D

Application uses a value of the wrong type
for the current operation.

adErrDataOverflow 3721 -2146824567
0x800A0E89

Data value is too large to be represented by
the field data type.

adErrDelResOutOfScope 3738 -2146824550
0x800A0E9A

URL of the object to be deleted is outside
the scope of the current record.

adErrDenyNotSupported 3750 -2146824538
0x800A0EA6

Provider does not support sharing
restrictions.

adErrDenyTypeNotSupported 3751 -2146824537
0x800A0EA7

Provider does not support the requested
kind of sharing restriction.

adErrFeatureNotAvailable 3251 -2146825037
0x800A0CB3

Object or provider is not able to perform
requested operation.

adErrFieldsUpdateFailed 3749 -2146824539
0x800A0EA5

Fields update failed. For more information,
examine the Status property of individual
field objects.

adErrIllegalOperation 3219 -2146825069
0x800A0C93

Operation is not allowed in this context.

adErrIntegrityViolation 3719 -2146824569
0x800A0E87

Data value conflicts with the integrity
constraints of the field.

adErrInTransaction 3246 -2146825042
0x800A0CAE

Connection object cannot be explicitly
closed while in a transaction.

adErrInvalidArgument 3001 -2146825287
0x800A0BB9

Arguments are of the wrong type, are out of
acceptable range, or are in conflict with one
another.

adErrInvalidConnection 3709 -2146824579
0x800A0E7D

The connection cannot be used to perform
this operation. It is either closed or invalid in
this context.

adErrInvalidParamInfo 3708 -2146824580
0x800A0E7C

Parameter object is incorrectly defined.
Inconsistent or incomplete information was
provided.

adErrInvalidTransaction 3714 -2146824574
0x800A0E82

Coordinating transaction is invalid or has not
started.

adErrInvalidURL 3729 -2146824559
0x800A0E91

URL contains invalid characters. Make sure
that the URL is typed correctly.

adErrItemNotFound 3265 -2146825023
0x800A0CC1

Item cannot be found in the collection that
corresponds to the requested name or
ordinal.

adErrNoCurrentRecord 3021 -2146825267
0x800A0BCD

Either BOF or EOF is True, or the current
record has been deleted. Requested
operation requires a current record.

adErrNotExecuting 3715 -2146824573
0x800A0E83

Operation cannot be performed while not
executing.



p137

© Zentel Telecom Ltd, 2009

adErrNotReentrant 3710 -2146824578
0x800A0E7E

Operation cannot be performed while
processing event. 

adErrObjectClosed 3704 -2146824584
0x800A0E78

Operation is not allowed when the object is
closed. 

adErrObjectInCollection 3367 -2146824921
0x800A0D27

Object is already in collection. Cannot
append.

adErrObjectNotSet 3420 -2146824868
0x800A0D5C

Object is no longer valid.

adErrObjectOpen 3705 -2146824583
0x800A0E79

Operation is not allowed when the object is
open. 

adErrOpeningFile 3002 -2146825286
0x800A0BBA

File could not be opened.

adErrOperationCancelled 3712 -2146824576
0x800A0E80

Operation has been canceled by the user.

adErrOutOfSpace 3734 -2146824554
0x800A0E96

Operation cannot be performed. Provider
cannot obtain enough storage space.

adErrPermissionDenied 3720 -2146824568
0x800A0E88

Insufficient permission prevents writing to
the field.

adErrProviderFailed 3000 -2146825288
0x800A0BB8

Provider did not perform the requested
operation.

adErrProviderNotFound 3706 -2146824582
0x800A0E7A

Provider cannot be found. It may not be
correctly installed.

adErrReadFile 3003 -2146825285
0x800A0BBB

File could not be read.

adErrResourceExists 3731 -2146824557
0x800A0E93

Copy operation cannot be performed. Object
named by destination URL already exists.
Specify adCopyOverwrite to replace the
object.

adErrResourceLocked 3730 -2146824558
0x800A0E92

Object represented by the specified URL is
locked by one or more other processes. Wait
until the process has finished and try the
operation again.

adErrResourceOutOfScope 3735 -2146824553
0x800A0E97

Source or destination URL is outside the
scope of the current record.

adErrSchemaViolation 3722 -2146824566
0x800A0E8A

Data value conflicts with the data type or
constraints of the field.

adErrSignMismatch 3723 -2146824565
0x800A0E8B

Conversion failed because the data value
was signed and the field data type used by
the provider was unsigned.

adErrStillConnecting 3713 -2146824575
0x800A0E81

Operation cannot be performed while
connecting asynchronously.

adErrStillExecuting 3711 -2146824577
0x800A0E7F

Operation cannot be performed while
executing asynchronously.

adErrTreePermissionDenied 3728 -2146824560
0x800A0E90

Permissions are insufficient to access tree or
subtree. 

adErrUnavailable 3736 -2146824552
0x800A0E98

Operation did not complete and the status is
unavailable. The field may be unavailable or
the operation was not attempted.

adErrUnsafeOperation 3716 -2146824572
0x800A0E84

Safety settings on this computer prevent
accessing a data source on another domain.

adErrURLDoesNotExist 3727 -2146824561
0x800A0E8F

Either the source URL or the parent of the
destination URL does not exist.

adErrURLNamedRowDoesNotExist 3737 -2146824551
0x800A0E99

Record named by this URL does not exist. 

adErrVolumeNotFound 3733 -2146824555
0x800A0E95

Provider cannot locate the storage device
indicated by the URL. Make sure that the
URL is typed correctly.

adErrWriteFile 3004 -2146825284
0x800A0BBC

Write to file failed.

adWrnSecurityDialog 3717 -2146824571
0x800A0E85

For internal use only. Do not use.

adWrnSecurityDialogHeader 3718 -2146824570
0x800A0E86

For internal use only. Do not use.



p138

© Zentel Telecom Ltd, 2009

-o-

ADO Library Function Quick Reference
// Library level functions
adoTrace(Tracelevel)
adoErrVerbose(Errlevel)

// Task level functions
adoBlockMode(mode)
adoLastError()
adoBusyState()

// Connection functions
adoConnection(name, prv_or_pub)
adoConnOpen(handle,UID,PWD,conn_str1[,conn_str2...])
adoConnParmGet(handle,parmID,&Value)
adoConnParmSet(handle,parmID,Value)
adoConnClose(handle)
adoConnGetHandle(ConnName)
adoConnTransBegin(handle)
adoConnTransCommit(handle)
adoConnTransCancel(handle)
adoConnState(SetHandle)

// Recordset functions
adoRecordSet(name,conHandle,prvpub_flag)
adoRSetQuery(RShandle,cursor_type,lock_type,options,query_str1[,query_str2...])
adoRSetCmd(RShandle,cursor_type,lock_type,options,query_str1[,query_str2...])
adoRSetParmSet(handle,parmID,Value)
adoRSetParmGet(handle,parmID,&Value)
adoRSetClose(handle)
adoRSetGetHandle(RsetName)
adoRSetRecCount(handle)
adoRSetMove(handle,numrec[,start])
adoRSetMoveFirst(handle)
adoRSetMoveLast(handle)
adoRSetMoveNext(handle)
adoRSetMovePrev(handle)
adoRSetAddNew(handle)
adoRSetUpdate(handle)
adoRSetCancelUpd(handle)
adoRSetUpdBatch(handle,affected)
adoRSetCancelBatch(handle,affected)
adoRSetDelete(handle[,affected])
adoRSetState(SetHandle)
adoRSetIsBOF(SetHandle)
adoRSetIsEOF(SetHandle)



p139

© Zentel Telecom Ltd, 2009

// Field level functions
adoFldCount(handle)
adoFldGetName(handle,ix)
adoFldGetValue(handle,ix/name,&Value)
adoFldSetValue(handle,ix/name,Value)
adoFldParmGet(handle,ix/name,ParmID,pValue)
adoFldParmSet(handle,ix/name,ParmID,Value)

-o-

ADO Function Reference

adoTrace
Synopsis:
 adoTrace(TraceLevel)

Arguments:
TraceLevel - 0=off, 1=trace on

Description: This function switches on or off the tracing of ADO function calls and events.

Returns:  0

-o-

adoErrVerbose
Synopsis:

adoErrVerbose(Errlevel)
Arguments:

ErrLevel - 0 to turn off verbose error messages, 1 to switch on verbose error messages
(default)

Description:  Verbose error  messages also  show the  full  function name and  all  of  the  aguments
passed to an ADO function as part of the error message.    With verbose error messages there will
be two lines of error message in the log for every error that is generated..

Returns :   0

-o-

adoBlockMode



p140

© Zentel Telecom Ltd, 2009

Synopsis:
adoBlockMode(block_mode)

Arguments:
block_mode - Set to 0 for blocking, non-zero for non-blocking mode

Description:    This  function  affects  the  adoConnOpen(),  adoRSetQuery()  and  adoRSetCmd()
functions  and  defines  wheher  these  functions  will  block  waiting  until  the  asynchronous function
completes  (blocking  mode)  ,  or  whether  the  function  return  control  back  to  the  calling  task
immediately.              

In non-blocking mode it is up to the calling application to ensure that the asyncronous function has
completed before attempting any other ado function that attempts to access the object.              
There  are  certain  exceptions  to  this  such  as  the  adoConnParmGet(),  adoConnParmSet(),
adoRSetParmGet(),  adoRSetParmSet()  which  can  be  called  at  any  time  after  the  object  handles
have been created.       

Returns:   0

-o-

adoLastError
Synopsis:

adoLastError()
Arguments:

NONE

Description:  If an ado function results in the error ADOERR_COMERR being returned, then the
underlying ADO error code will be stored in the task structure and can be retreived by this function.
     

Returns:   Returns the last ADO error code received by the calling task (see Error Codes).

-o-

adoBusyState
Synopsis:

adoBusyState()
Arguments:

NONE

Description:    Returns  1  if  the  current  task  is   executing  an  asynchronous  function  such  as
adoConnOpen(), adoRSetQuery(), adoRSetCmd().      This can be used by a task in non-blocking
mode to poll for the completion of an asynchronous function.   Once the asyncronous function has
completed then adoBusyState() function will return 0.      Note that this will only return the status
of  the  asyncronous  functions  initiated  by  the  calling  task.     If  another  task  has  started  the
asynchronous function then adoConnState() or adoRSetState() should be used instead to determine



p141

© Zentel Telecom Ltd, 2009

when the function has completed.

Returns:   1 if there is an asyncronous function still running that was initiated by this task,  0 if
there are no asynchronous functions running that we started by this task.

-o-

adoConnection
Synopsis:

handle=adoConnection([name, prv_or_pub])
Arguments:

name - An optional name that will uniquely identify the connect object (mainly for public
connections)

prv_or_pub - Set to 0 for Private connection, 1 for public connection (optional - default
private)

Description:  This function creates a Connection object and returns a unique handle.     The
connection object can be opened in private or public mode and can be given an optional name
which can be used to retreive the handle using the adoConnGetHandle(name) function.

Important Note:  Upon creating the underlying _Connection object the CusorLocation property is
hard-coded to to adUseClient.     This is necessary in order for the libary to work in asyncronous
(non-blocking) mode.         If you attempt to change the CusorLocation to adUseServer in the
adoConnParmSet() function then this could cause some of the ado functions to work syncronously,
thus blocking the Telecom Engine task scheduler and seriously effecting performance.     If you
need to use server side cursors for any reason then it is suggested that you carefully trace all
function calls to check that they don't block for significant periods of time (see Performance and
blocking calls) and, if necesary, consider using a client-server model based on the
CXSOCKETS.DLL library instead.

A private connection can only be accessed from the task that created it,  and any attempt to access
a connection from another task will result in an error.    When a task ends (either through a chain
to another task, a stop or restart statement is encountered, the end of program  is reached or the task
is explicit killed),  then all private connections that the task created will be closed and released.    
When a connection is closed then all recordsets associated with that connection will also be
closed and released.

Public connections can be accessed from any task once it has been opened.      If the task that
created it is ended for any reason then the connection will not be closed.           Often it is useful to
make a single public connection to a datastore upon start-up, then all other tasks can create and
open recordsets on that single connection.

The maximum number of simultaneous connections that can be open at any one time 1024 (ie there
are 1024 handles available).

If a name is provided for a public connection then other tasks can obtain the connection handle by
using adoConGetHandle(name).    All names must be unique, although a blank name can be given
for multiple public connections, however then the handle cannot be retreived using
adoConnGetHandle(name) and must be obtained another way (E.g. global variable).       Giving a
name to a private connection is of little use since the handle will only be retrievable from the task
that called the function (which should already have obtained the handle from the return value.



p142

© Zentel Telecom Ltd, 2009

Both options can be omitted, in which case a private, nameless connection will be created.

Returns:  Returns the connection object handle or a negative error code.

-o-

adoConnOpen
Synopsis:

adoConnOpen(handle,UID,PWD,conn_str1[,conn_str2...])
Arguments:

handle - The connection handle.
UID - The user ID (can be left blank if it appears in the connection string)
PWD - The password (can be left blank if it appears in the connection string)
conn_str1  - The first part of the connction string
[conn_str2..] - (optional) The remainder of the connection string across the remaining

arguments.

Description:   This function attempts to open a connection on the given handle using the user id (
UID), password (PWD), and connection string (conn_str1, con_str2....) provided.           

Note  that  this  function  will  block  the  calling  task,  unless  block  mode  is  switched  off  using
adoblockMode(), and will remain blocked until the connection completion event is received,  after
which the task is woken up again with the appropriate return code.      Please make sure you are
aware of performace issues that may arise with this function (see Performance and blocking calls).

The UID and PWD are optional arguments that can specify the login user ID and password for the
data source.     Alternativly these can be specified driectly inside the connection string.

The  remaining  arguments  are  concatenated  into  a  single  connection  string  (but  must  not  exceed
2047 characters).      For example in the following connection string is made up from a number of
arguements that have been concatenated together in this way:

userID="postgres"

Passwd="admin"

Datasource="MyDSN";

Provider="MSDASQL.1"

     x=adoConnOpen(handle, "","", "Provider=",Provider,"; User ID=",userID,"; Password=",Passwd,"; Data

Source=",Datasource);

     etc.

This is equivalent to :
 
     x=adoConnOpen(handle,"","2,"Provider=MSDASQL.1;Password=admin;User ID=postgres;Data

Source=MyDSN");

Which is also equivalent to:

userID="postgres"



p143

© Zentel Telecom Ltd, 2009

Passwd="admin"

    

 x=adoConnOpen(handle,userID,Passwd,  "Provider=MSDASQL.1;Data  Source=MyDSN");

Source=",Datasource);

The connection string that is used will depend upon the data source provider and will differ from
source  to  source.    Below  are  some  examples  of  connection  strings  for  different  kinds  of  data
sources:

Oracle using Microsoft OLE provider:

"Provider=msdaora;Data Source=MyOracleDB;User Id=myUsername;Password=myPassword;"

Microsoft SQL server native client  10.0 OLE DB provider:

"Provider=SQLNCLI10;Server=myServerAddress;Database=myDataBase;Uid=myUsername;

Pwd=myPassword;"

Microsoft Access Database using ACE OLE DB 12.0:

"Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\myFolder\myAccess2007file.accdb;Jet

OLEDB:Database Password=MyDbPassword";

A comprehensive list of connection strings for different data sources can be found here:

http://www.connectionstrings.com

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnParmGet
Synopsis:

adoConnParmGet(handle,parmID,&pValue)
Arguments:

handle - The connection handle.
parmID - The parameter ID
pValue - Pointer to the variable that will hold the parameter value

Description:   This function enables the underlying connection parameters to be examined for the
connection defined by handle.     The parmID argument is the ID of the parameter that is to be read
and  the  pValue  is  a  pointer  to  a  variable  that  will  hold  the  returned  parameter  value.        The
parmID should be set to one of the following values as defined in the ado.inc  file supplied with
the library as follows:

################# CONNECTION PARAMETERS  ###############

const P_CON_ATTRIBUTES       =101;         # Sets or returns the attributes of a Connection object 

const P_CON_COMMANDTIMEOUT    =102;         # Sets or returns the number of seconds to wait while

attempting to execute a command 

const P_CON_CONNECTIONSTRING  =103;         # Sets or returns the details used to create a connection

to a data source 

http://www.connectionstrings.com


p144

© Zentel Telecom Ltd, 2009

const P_CON_CONNECTIONTIMEOUT=104;          # Sets or returns the number of seconds to wait for a

connection to open 

const P_CON_CURSORLOCATION    =105;         #  Sets or returns the location of the cursor service 

const P_CON_DEFAULTDATABASE   =106;         #  Sets or returns the default database name 

const P_CON_ISOLATIONLEVEL   =107;         #  Sets or returns the isolation level 

const P_CON_MODE              =108;         #  Sets or returns the provider access permission 

const P_CON_PROVIDER         =109;         #  Sets or returns the provider name 

const P_CON_STATE            =110;         #  Returns a value describing if the connection is open or closed 

const P_CON_VERSION          =111;         #  Returns the ADO version number 

These constants are mapped to the equiivalent properties in the underlying _Connection object as
follows:

Property Readabl
e

Writea
ble

Description

Attributes Sets or returns the attributes of a Connection object
CommandTimeo
ut

Sets or returns the number of seconds to wait while attempting to execute a
command

ConnectionString Sets or returns the details used to create a connection to a data source
ConnectionTime
out

Sets or returns the number of seconds to wait for a connection to open

CursorLocation Sets or returns the location of the cursor service
DefaultDatabase Sets or returns the default database name
IsolationLevel Sets or returns the isolation level
Mode Sets or returns the provider access permission
Provider Sets or returns the provider name
State Returns a value describing if the connection is open or closed
Version Returns the ADO version number

For those parameters that are restricted to a set of enumerated values, then the equivalent constants
have been defined in the ado.inc include file for those enumerations.     For example, the LockType
property of the _Connection property can take on one of the following enumerated values:

adLockBatchOptimistic 4 Indicates optimistic batch updates. Required for batch update mode.
adLockOptimistic 3 Indicates optimistic locking, record by record. The provider uses optimistic

locking, locking records only when you call the Update method.
adLockPessimistic 2 Indicates pessimistic locking, record by record. The provider does what is

necessary to ensure successful editing of the records, usually by locking
records at the data source immediately after editing.

adLockReadOnly 1 Indicates read-only records. You cannot alter the data.
adLockUnspecified -1 Does not specify a type of lock. For clones, the clone is created with the same

lock type as the original.

The equivalent constants for these enumerated values are defined in ado.inc as follows:

# Lock type constants

const    adLockUnspecified = "-1";

const    adLockReadOnly = 1;

const    adLockPessimistic = 2;

const    adLockOptimistic = 3;

const    adLockBatchOptimistic = 4;

[See the Microsoft ADO Reference Libary for more details].

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,

http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx


p145

© Zentel Telecom Ltd, 2009

then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnParmSet
Synopsis:

adoConnParmSet(handle,parmID,Value)
Arguments:

handle - The connection handle.
parmID - The parameter ID to set
Value- The value to set the parameter to

Description:    This  function  enables  the  underlying  connection  parameters  to  be  set  for  the
connection defined by handle.     The parmID argument is the ID of the parameter that is to be set
(see adoConnParmGet())  and the Value  is  the value to set  it  to.     Note that  this  function can be
used at any time after the connection object has been created by a call to adoConnection() and can
be used to set up the properties of the connection prior to calling the adoConnOpen() function call.

Important Note:  Upon creating the underlying _Connection object the CusorLocation property is
hard-coded to to adUseClient.     This is necessary in order for the libary to work in asyncronous
(non-blocking) mode.         If you attempt to change the CusorLocation to adUseServer in the
adoConnParmSet() function then this could cause some of the ado functions to work syncronously,
thus blocking the Telecom Engine task scheduler and seriously effecting performance.     If you
need to use server side cursors for any reason then it is suggested that you carefully trace all
function calls to check that they don't block for significant periods of time (see Performance and
blocking calls) and, if necesary, consider using a client-server model based on the
CXSOCKETS.DLL library instead.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnClose
Synopsis:

adoConnClose(handle)
Arguments:

handle - The connection handle.

Description:    This  function  closes  the  connection specified  by handle   (if  it  is  open)  and  then
releases the  underlying ADO _Connection object.           Note  that  a  task  can  only close  public
connections or those private connections that it opened itself.              When a connection is closed
then all underlying recordsets that rely on this connection will also be closed and released.      If
any other tasks are using the connection or any recordsets dependant on this connection then any
subsequent  calls  attempting  to  use  these  objects  will  result  in  an  error.                Careful
co-ordination should  be  carried  out  between  tasks  if  a  public  connection  is  closed  since  another
adoConnOpen() might result in the same handle being allocated, then any tasks that were using the
original  handle  will  suddenly  have  access  to  the  new  connectio  data  instead,  with  possible
unexpected results.



p146

© Zentel Telecom Ltd, 2009

Note that  when a task stops through an explicit  kill  request,  or  a  stop  or  restart  command,  or  by
reaching  the  end  of  the  program,  or  by  'chaining'  to  another  program  then  all  open  private
connections and recordsets will be automatically closed and released.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnGetHandle
Synopsis:

handle=adoConnGetHandle(ConnName)
Arguments:

ConnName - The connection connection name.

Description:    If  a  connection  is  opened  in  public  mode  and  is  given  a  unque  name  (see
adoConnection()),  then  this  function  enables  other  tasks  to  obtain  the  connection  handle  by
specifying  this  unque  name  as  the  argument.      For  example  if  task  1  opens  a  public,  named
connection like this:

adoConnection("MyConn",TYPE_PRIVATE);

Another task can obtain the handle to this public connection through:

handle=adoConnGetHandle("MyConn");

Returns:   Returns the connection handle associated with the given name upon success or
ADOERR_INVLDNAME if the name was not found.

-o-

adoConnState
Synopsis:

state=adoConnState(handle)
Arguments:

handle - The connection handle.

Description:   This function returns the underlying state of the ADO _Connection object and can
be  used  to  determine  when  an  asynchronous  function  has  completed  (Especially  useful  in
non-blocking mode (see adoBlockMode()).

The  state  returned  will  be  one  of  the  enumerated  state  values  as  defined  in  the  ado.inc  file  as
follows:

Constant Value Description
adStateClosed 0 The object is closed
adStateOpen 1 The object is open



p147

© Zentel Telecom Ltd, 2009

adStateConnecting 2 The object is connecting
adStateExecuting 4 The object is executing a command
adStateFetching 8 The rows of the object are being retrieved

Returns:   Returns the underlying state property of the ADO _Connection object or a negative
error code.   If ADOERR_COMERR is returned, then the underlying ADO error can be obtained by
calling adoLastError()

-o-

adoConnTransBegin
Synopsis:

adoConnTransBegin(handle)
Arguments:

handle - The connection handle.

Description:   This function starts a transaction on the connection specified by handle.     After you
call the adoConnTransBegin() method, the provider will no longer instantaneously commit changes
you make until you call adoConnTransCommit() or adoConnTransCancel() to end the transaction.
For providers that support nested transactions, calling the adoConnTransBegin() method within an
open transaction starts a new, nested transaction. The return value indicates the level of nesting: a
return value of "1" indicates you have opened a top-level transaction (that is, the transaction is not
nested within another transaction), "2" indicates that you have opened a second-level transaction (a
transaction nested within a top-level transaction), and so forth. Calling adoConnTransCommit() or
adoConnTransCancel() affects only the most recently opened transaction; you must close or roll
back the current transaction before you can resolve any higher-level transactions.

Calling the adoConnTransCommit() method saves changes made within an open transaction on the
connection and ends the transaction. Calling the adoConnTransCancel() method reverses any
changes made within an open transaction and ends the transaction. Calling either method when
there is no open transaction generates an error.

Depending on the Connection object's Attributes property (see adoConnParmGet()), calling either
the adoConnTransCommit() or adoConnTransCancel()  methods may automatically start a new
transaction. If the Attributes property is set to adXactCommitRetaining, the provider
automatically starts a new transaction after a adoConnTransCommit()  call. If the Attributes
property is set to adXactAbortRetaining, the provider automatically starts a new transaction after
a adoConnTransCancel() call.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnTransCommit
Synopsis:

adoConnTransCommit(handle)
Arguments:

handle - The connection handle.



p148

© Zentel Telecom Ltd, 2009

Description:   This function saves changes made within an open transaction on the connection and
ends the transaction.   All changes made from the time the  adoConnTransBegin() function call is
made  to  the  time  adoConnTransCommit()  is  made  will  be  written  to  the  database.        See
adoConnTransBegin() for a full description of ADO transactions..

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoConnTransCancel
Synopsis:

adoConnTransCancel(handle)
Arguments:

handle - The connection handle.

Description:   This function cancels (or Rolls back) a transaction on the connection specified by
handle.      Any  changes  that  have  been  made  to  any  recordsets  associated  with  this  connection
between the adoConnTransBegin() and the adoConnTransCancel() function call will be lost.

For a full description of ADO transactions please see adoConnTransBegin().

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRecordSet
Synopsis:

adoRecordset(name,conHandle,prvpub_flag)
Arguments:

conHandle - The connection handle of the connection object to associate with this recordset.
name - An optional name that will uniquely identify the recordset object (mainly for public

recordsets)
prv_or_pub - Set to 0 for Private recordset, 1 for public recordset(optional - default private)

Description:  This function creates a recordset object on the connection specified by conHandle
and returns a unique recordset handle to the created object.     The recordset object can be opened
in private or public mode and can be given an optional name, which can be used by other tasks to
retrieve the handle using the adoRSetGetHandle(name) function.

A private recordset can only be accessed from the task that created it,  and any attempt to access a
recordset from another task will result in an error.    When a task ends (either through a chain to
another task, a stop or restart statement is encountered, the end of program  is reached or the task is
explicit killed),  then all private recordsets that the stopped task created will be closed and released.
    If  the connection with which the recordset is associated with is closed then the created
recordset will also be automatically closed and released along with it.



p149

© Zentel Telecom Ltd, 2009

Public recordsets can be accessed from any task once it has been created.      If the task that created
it is stopped for any reason then the public recordset will not be closed and released (it must be
done explicitly).           

There are two constants defined in the ado.inc file as follows:

const TYPE_PRIVATE=0;

const TYPE_PUBLIC=1;

The maximum number of simultaneous recordsets that can be open at any one time 2048 (ie there
are 2048 recordset handles available).

If a name is provided for a public recordset then other tasks can obtain the recordset handle by
using adoRSetGetHandle(name).    All names must be unique, although a blank name can be given
for multiple public connections, however then the handle cannot be retreived using
adoConnGetHandle(name) and must be obtained another way (E.g. global variable).       Giving a
name to a private recordset is of little use since the handle will only be retrievable from the task
that called the function (which should already have obtained the handle from the return value).

Both name and priv_or_pub arguments can be omitted, in which case a private, nameless recordset
will be created.

Returns:  Returns the connection object handle or a negative error code.

-o-

adoRSetQuery
Synopsis:

adoRSetQuery(handle,cursor_type,lock_type,options,query_str1[,query_str2...])
Arguments:

handle - The recordset handle.
cursor_type - The type of cursor
lock_type - The locking type
options - Additional options
query_str1  - The query string
[query_str2..] - optional additional text that will be concatenated to make the complete query

string..

Description:   This function executes a query on the resordset specified by the handle argument.  
  The cursor_type argument can be set to one of the following constants (as defined in ado.inc):

Constant Value Description
adOpenUnspecified -1 Does not specify the type of cursor.
adOpenForwardOnly 0 Default. Uses a forward-only cursor. Identical to a static cursor,

except that you can only scroll forward through records. This
improves performance when you need to make only one pass through
a Recordset.

adOpenKeyset 1 Uses a keyset cursor. Like a dynamic cursor, except that you can't see
records that other users add, although records that other users delete
are inaccessible from your Recordset. Data changes by other users are



p150

© Zentel Telecom Ltd, 2009

still visible.
adOpenDynamic 2 Uses a dynamic cursor. Additions, changes, and deletions by other

users are visible, and all types of movement through the Recordset are
allowed, except for bookmarks, if the provider doesn't support them.

adOpenStatic 3 Uses a static cursor. A static copy of a set of records that you can use
to find data or generate reports. Additions, changes, or deletions by
other users are not visible.

The lock_type argument can be set to one of the following constants (as define in ado.inc):

Constant Value Description
adLockUnspecified -1 Unspecified type of lock. 
adLockReadOnly 1 Read-only records
adLockPessimistic 2 Pessimistic locking, record by record. The provider lock records

immediately after editing
adLockOptimistic 3 Optimistic locking, record by record. The provider lock records only

when calling update
adLockBatchOptimistic 4 Optimistic batch updates. Required for batch update mode

If adLockBatchOptimistic is specified then the recordset is opened in batch mode which enables
the use of the adoRSetUpdBatch() and adoRSetCancelBatch() functions to be used (if supported by
the data provider).

The  options  argument  allows  additional  options  to  be  specified  and  can  be  one  or  more  of  the
CommandTypeEnum  values  or  the  ExecuteOptionEnum  values  shown below (these  constants
are  defined  in  the  ado.inc  file)   .     The  adoRSetQuery() function  will  always  add  the  options:  
adoAsyncExecute,  adoAsyncFetch  and  adoAsyncFetchNonBlocking  options,   and  this
functionality cannot be turned off.       Care should be taken when adding some of these options as
it  may  effect  the  way  the  library  reacts  to  ADO  events.            for  example,  setting  the
adoExecuteNoRecords option  will  probably stop  the  FetchComplete  event  being  triggered  so  in
blocking mode the adoRSetQuery() function call will block forever and never return.

CommandTypeEnum values:  

Constant Value Description
adCmdUnspecified -1 Unspecified type of command
adCmdText 1 Evaluates CommandText as a textual definition of a command or

stored procedure call
adCmdTable 2 Evaluates CommandText as a table name whose columns are returned

by an SQL query
adCmdStoredProc 4 Evaluates CommandText as a stored procedure name
adCmdUnknown 8 Default. Unknown type of command
adCmdFile 256 Evaluates CommandText as the file name of a persistently stored

Recordset. Used with Recordset.Open or Requery only.
adCmdTableDirect 512 Evaluates CommandText as a table name whose columns are all

returned. Used with Recordset.Open or Requery only. To use the Seek
method, the Recordset must be opened with adCmdTableDirect.
Cannot be combined with the ExecuteOptionEnum value
adAsyncExecute. 



p151

© Zentel Telecom Ltd, 2009

ExecuteOptionEnum values. 

adOptionUnspecified -1 Unspecified command
adAsyncExecute 16 The command should execute asynchronously. Cannot be combined with the

CommandTypeEnum value adCmdTableDirect 
adAsyncFetch 32 The remaining rows after the initial quantity specified in the CacheSize property

should be retrieved asynchronously
adAsyncFetchNonBlocking 64 The main thread never blocks while retrieving. If the requested row has not been

retrieved, the current row automatically moves to the end of the file. If you open
a Recordset from a Stream containing a persistently stored Recordset,
adAsyncFetchNonBlocking will not have an effect; the operation will be
synchronous and blocking. adAsynchFetchNonBlocking has no effect when the
adCmdTableDirect option is used to open the Recordset

adExecuteNoRecords 128 The command text is a command or stored procedure that does not return rows.
If any rows are retrieved, they are discarded and not returned.
adExecuteNoRecords can only be passed as an optional parameter to the
Command or Connection Execute method

adExecuteStream 256 The results of a command execution should be returned as a stream.
adExecuteStream can only be passed as an optional parameter to the Command
Execute method 

adExecuteRecord 512 The CommandText is a command or stored procedure that returns a single row
which should be returned as a Record object

The  SQL  query  string  is  specified  in  one  or  more  of  the  the  remaining  arguments  (query_str1,
query_str2  ...),  which  will  be  concatenated  together  into  one  complete  string.          The
concatenated query  string  must  not  exceed  2047  characters.         For  example  in  the  following
query string is made up from a number of arguments that have been concatenated together in this
way:

   acc_no="129934";

    x=adoRSetQuery(handle,adOpenStatic,adLockReadOnly,-1,"select  *  from  customers  where

acc_no=",acc_no);

which is equivalent to the following:

     x=adoRSetQuery(handle,adOpenStatic,adLockReadOnly,-1,"select  *  from  customers  where

acc_no=129934");

Remember that the maximum number of arguments that can be passed to a DLL library function in
the Telecom Engine is 32.

Note  that  this  function  relies  on  the  FetchComplete  event  being  triggered  in  blocking  mode  in
order  to  wake  up  the  calling  task.     If  for  some  reason  the  data  provider  does  not  cause  the
FetchComplete  task  to  trigger  then  use  the  adoRSetCmd()  function  instead,   which  is  identical
except for it relies on the ExecuteComplete event instead.
      
Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetCmd



p152

© Zentel Telecom Ltd, 2009

Synopsis:
adoRSetCmd(handle,cursor_type,lock_type,options,query_str1[,query_str2...])

Arguments:
handle - The recordset handle.
cursor_type - The type of cursor
lock_type - The locking type
options - Additional options
query_str1  - The query string
[query_str2..] - optional additional text that will be concatenated to make the complete query

string..

Description:   This function executes a query on the resordset specified by the handle argument.  
  This  function  is  identical  to  the  adoRSetQuery()  function  except  that  it  waits  for  the
ExecuteComplete  event  to  trigger  before  waking  up  the  calling  task,  rather  than  the
FetchComplete event  used  by the  adoRSetQuery()  function.       The  adoRSetCmd()  function  is
usually used for executing queries that do not return any rows of data whereas the adoRSetQuery()
function is used when the query will return one or more rows of data.     

For a full description of the cursor_type, lock_type and options arguments, see  adoRSetQuery().

The actual query string is  made up by concatenating all  of  the  remaining arguments (query_str1,
query_str2....),  but  the   concatenated  query  string  must  not  exceed  2047  characters.         For
example  in  the  following  query  string  is  made  up  from  a  number  of  arguments  that  have  been
concatenated together in this way:

   table_name="customers";

    x=adoRSetCmd(handle,adOpenStatic,adLockReadOnly,-1,"create table ",table_name," (name Text, 

acc_no Integer)");

which is equivalent to the following:

     x=adoRSetCmd(handle,adOpenStatic,adLockReadOnly,-1,"create table customers (name Text, acc_no

Integer)");

Remember that the maximum number of arguments that can be passed to a DLL library function in
the Telecom Engine is 32.  

Note that in blocking mode this function relies on the ExecuteComplete event being triggered in
blocking mode in order to wake up the calling task.    

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetResync
Synopsis:

adoRSetResync(handle[,AffectRecord[,ResyncValues]])
Arguments:

handle - The recordset handle.
AffectRecord - Optional flag to specify which records are effected



p153

© Zentel Telecom Ltd, 2009

ResyncValues - Option specifying if underlying values are updated

Description: This function refreshes the data in the recordset specified by handle.    It does not
re-execute the query on the recordset therefore new records in the underlying database will not be
visible.     If the attempt to resynchronize fails because of a conflict with the underlying data (for
example, a record has been deleted by another user), the provider returns warnings to the Errors
collection and a run-time error occurs. 
The optional AffectRecord argument defined which records are affected by the resynchronization
(default adAffectAll) and can be set to one of the following values as defined in the ado.inc:

const adAffectCurrent = 1;     # just current record

const adAffectGroup = 2;     # those made visible by filter

const adAffectAll = 3;     # all records

const adAffectAllChapters = 4;

The optional RsyncValues argument defines whether underlying values are overwritten.   It can be
set to one of the following values as specified in ado.inc:
const adResyncUnderlyingValues =1; # Does not overwrite data, and pending updates are not

canceled

const adResyncAllValues =2; # Default. Overwrites data, and pending updates are canceled 

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetRequery
Synopsis:

adoRSetRequery(handle,options)
Arguments:

handle - The recordset handle.
options - Additional options

Description:   This function executes a requery on the resordset specified by the handle argument
in order to update the underlying recordset data from the data source.     

The  options  argument  is  a  combination  of  the  CommandTypeEnum  and  ExecuteOptionEnum
values  as  described  in  adoRSetQuery().    The  adoRSetRequery()  function  will  always  add  the
options:  adoAsyncExecute, adoAsyncFetch and adoAsyncFetchNonBlocking options,  and this
functionality cannot be turned off.

Note  that  in  blocking  mode  this  function  relies  on  the  FetchComplete  event  being  triggered  in
blocking mode in order to wake up the calling task.    

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetParmGet



p154

© Zentel Telecom Ltd, 2009

Synopsis:
adoRSetParmGet(handle,parmID,&Value)

Arguments:
handle - The recrodset handle.
parmID - The parameter ID
pValue - Pointer to the variable that will hold the parameter value

Description:   This function enables the underlying recordset parameters to be examined for the
recordset defined by handle.     The parmID argument is the ID of the parameter that is to be read
and  the  pValue  is  a  pointer  to  a  variable  that  will  hold  the  returned  parameter  value.        The
parmID should be set to one of the following values as defined in the ado.inc  file supplied with
the library as follows:

const P_RS_ABSOLUTEPAGE  =1; #  Sets or returns a value that specifies the page number in the

Recordset object 

const P_RS_ABSOLUTEPOSITION=2; #Sets or returns  the ordinal position of the current record in

the Recordset object 

const P_RS_ACTIVECOMMAND  =3; #Returns the Command object associated with the Recordset 

const P_RS_ACTIVECONNECTION=4; # Unreadable/unsettable from the cxado.dll library

const P_RS_BOF =5; #Returns true if the current record position is before the first record,

otherwise false

const P_RS_BOOKMARK  =6; #Sets  or  returns  a  bookmark.  The  bookmark saves  the

position of the current record 

const P_RS_CACHESIZE =7; #Sets or returns the number of records that can be cached 

const P_RS_CURSORLOCATION  =8; #Sets or returns the location of the cursor service 

const P_RS_CURSORTYPE  =9; #Sets or returns the cursor type of a Recordset object 

const P_RS_DATAMEMBER  =10; #Sets or returns the name of the data member that will be retrieved 

const P_RS_DATASOURCE  =11; # Unreadable/unsettable from the cxado.dll library

const P_RS_EDITMODE =12; #Returns the editing status of the current record 

const P_RS_EOF =13; #Returns true if the current record position is after the last record,

otherwise false 

const P_RS_FILTER =14; #Sets or returns a filter for the data in a Recordset object 

const P_RS_INDEX =15; #Sets or returns the name of the current index for a Recordset object

 

const P_RS_LOCKTYPE =16; #Sets or returns the type of locking when editing a record in a

Recordset 

const P_RS_MARSHALOPTIONS =17; # Sets or returns a value that specifies which records are to be

returned to the server 

const P_RS_MAXRECORDS =18; # Sets or returns the maximum number of records to return to

a Recordset object from a query 

const P_RS_PAGECOUNT =19; # Returns the number of pages with data in a Recordset object

 

const P_RS_PAGESIZE =20; # Sets or returns the maximum number of records allowed on a

single page of a Recordset object 

const P_RS_RECORDCOUNT =21; # Returns the number of records in a Recordset object 

const P_RS_SORT =22; # Sets or returns the field names in the Recordset to sort on 

const P_RS_SOURCE =23; # Sets a string value or a Command object reference, or returns a

String value that indicates the data source of the Recordset object 

const P_RS_STATE =24; #Returns a value that describes if the Recordset object is open,

closed, connecting, executing or retrieving data 

const P_RS_STATUS =25; #Returns the status of the current record with regard  to batch

updates or other bulk operations 

const P_RS_STAYINSYNC =26; # Sets or returns whether the reference to the child records will

change when the parent record position changes 

The above constants map one-to-one with the corresponding underlying properties from the ADO
_Recordset object as shown below:

Property Reada
ble

Writeab
le

Description



p155

© Zentel Telecom Ltd, 2009

AbsolutePage Sets or returns a value that specifies the page number in the Recordset object
AbsolutePosition Sets or returns a value that specifies the ordinal position of the current record in the

Recordset object
ActiveCommand Returns the Command object associated with the Recordset
ActiveConnectio
n

Sets or returns a definition for a connection if the connection is closed, or the
current Connection object if the connection is open

BOF Returns true if the current record position is before the first record, otherwise false
Bookmark Sets or returns a bookmark. The bookmark saves the position of the current record
CacheSize Sets or returns the number of records that can be cached
CursorLocation Sets or returns the location of the cursor service
CursorType Sets or returns the cursor type of a Recordset object
DataMember Sets or returns the name of the data member that will be retrieved from the object

referenced by the DataSource property
DataSource Specifies an object containing data to be represented as a Recordset object
EditMode Returns the editing status of the current record
EOF Returns true if the current record position is after the last record, otherwise false
Filter Sets or returns a filter for the data in a Recordset object
Index Sets or returns the name of the current index for a Recordset object
LockType Sets or returns a value that specifies the type of locking when editing a record in a

Recordset
MarshalOptions Sets or returns a value that specifies which records are to be returned to the server
MaxRecords Sets or returns the maximum number of records to return to a Recordset object

from a query
PageCount Returns the number of pages with data in a Recordset object
PageSize Sets or returns the maximum number of records allowed on a single page of a

Recordset object
RecordCount Returns the number of records in a Recordset object
Sort Sets or returns the field names in the Recordset to sort on
Source Sets a string value or a Command object reference, or returns a String value that

indicates the data source of the Recordset object
State Returns a value that describes if the Recordset object is open, closed, connecting,

executing or retrieving data
Status Returns the status of the current record with regard to batch updates or other bulk

operations
StayInSync Sets or returns whether the reference to the child records will change when the

parent record position changes

[See the Microsoft ADO Reference Libary for more details].

Note that some of the parameters are read-only and some of them can't be read or written at all by
the CXADO.DLL libarary.    

Also, for some of the parameters, there are utility functions which can provide another mechanism
for getting the value of the parameter.     specifically for the _Recordset parameters there are the
following utility functions defined:

adoRSetIsEOF(handle)
adoRSetIsBOF(handle)
adoRSetState(handle) 

Which allow for the equivalent parameters from the set above to be quickly read.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms675532(VS.85).aspx


p156

© Zentel Telecom Ltd, 2009

adoRSetParmSet
Synopsis:

adoRSetParmSet(handle,parmID,Value)
Arguments:

handle - The connection handle.
parmID - The parameter ID to set
Value- The value to set the parameter to

Description:    This  function  enables  the  underlying  recordset  parameters  to  be  set  for  the
connection defined by handle.     The parmID argument is the ID of the parameter that is to be set
(see adoRSetParmGet()) and the Value is the value to set it to.    Note that this function can be used
at any time after the recordset object has been created by a call to adoRecordset() and can be used
to  set  up  the  properties  of  the  recordset  prior  to  calling  the  adoRSetQuery()  or  adoRSetCmd()
function call.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetClose
Synopsis:

adoRSetClose(handle)
Arguments:

handle - The recordset handle.

Description:   This function closes the recordset specified by the handle argument and releases the
underlying ADO _Recordset object.

Any attempt to use the handle in any other functions will result in an error.             

A task  cannot  close  a  recordset  that  has  been opened privately by another  task,   and  any private
recordsets that are still open when a task stops will be automatically closed and released.               

Note that care should be taken when closing public recordsets because the recordset handle  might
be quickly reallocated to another recordset so any tasks making called to the original handle  will
then be referencing the wrong dataset, with unexpected results.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetGetHandle
Synopsis:

handle=adoRSetGetHandle(SetName)
Arguments:



p157

© Zentel Telecom Ltd, 2009

SetName - The recordset name.

Description:    If  a  recordset  is  opened  in  public  mode  and  is  given  a  unque  name  (see
adoRecordset()),  then  this  function  enables  other  tasks  to  obtain  the  connection  handle  by
specifying this  unque  name as  the  SetName  argument.      For  example  if  a  task  opens  a  public,
named recordset like this:

adoRecordSet("MySet",TYPE_PRIVATE);

Another task can obtain the handle to this public recordset through:

handle=adoRSetGetHandle("MySet");

Returns:   Returns the recordset handle associated with the given name upon success or
ADOERR_INVLDNAME if the name was not found.

-o-

adoRSetRecCount
Synopsis:

count=adoRSetRecCount(handle)
Arguments:

handle - The recordset handle.

Description:   This function returns the number of records in the rescordset returned by a call to 
adoRSetQuery() or adoRSetCmd(). 

Returns:   Returns the number of records in the recordset or a negative error code.   If
ADOERR_COMERR is returned, then the underlying ADO error can be obtained by calling 
adoLastError()

-o-

adoRSetMove
Synopsis:

adoRSetMove(handle,numrec[,start])
Arguments:

handle - The recordset handle.
numrecs - The number of records to move the record pointer (negative value moves

backwards).
[start] - Optional flag to indicate the start position of the move (default is to move

relative to current position).

Description:   This function moves the record pointer in a recordset (specified by handle) a certain
number of records as specified by numrecs,   forward or  backwards through the data relative to a
start  position  specified by the  optional  start  argument.           If  a  positive  value  for  numrecs  is
specified  then  the  function  will  move  the  record  pointer  forward  in  the  recordset,  if  a  negative
value is specified the the record pointer will attempt to move backwards in the recordset.



p158

© Zentel Telecom Ltd, 2009

The optional start argument indicated the starting position, relative to which the record pointer will
be  moved.      This  can  be  set  to  a  bookmark  offset  position  (see  adoRSetParmGet
(P_RS_BOOKMARK) ) or one of the following constants defined in ado.inc : 

Constant Value Description
adBookmarkCurrent 0 Starts at the current record (default)
adBookmarkFirst -1 Starts at the first record
adBookmarkLast -2 Starts at the last record

Technical  Note:  the  above  constants  differ  from  the  underlying  equivalent  enumeration  values
used  by  ADO,  as  they  have  been  made  negative  so  that  they  can  be  distinguished  from  a  valid
bookmark value.                In the underlying ADO library, the a VARIANT data type is used to
make this distinction (bookmarks are type R8, enums are I4).    however since the Telecom Engine
deals with string types for variables the above constants have been made negative in order to make
this same distinction.

If the Move call would move the current record position to a point before the first record, ADO sets
the current record to the position before the first record in the recordset (BOF is set to True). An
attempt to move backward when the BOF property is already True generates an error.

If the Move call would move the current record position to a point after the last record, ADO sets
the current record to the position after the last record in the recordset (EOF is set to True). An
attempt to move forward when the EOF property is already True generates an error.

Calling the Move method from an empty Recordset object generates an error.

Use adoRSetIsBOF() and adoRSetIsEOF() to test these conditions.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetMoveFirst
Synopsis:

adoRSetMoveFirst(handle)
Arguments:

handle - The recordset handle.

Description:   This function moves the record pointer of the underlying recordset data to the first
record in the recordset.   A call to adoRSetMoveFirst() when the recordset is empty will result in an
error.     An empty recordset will  have EOF and BOF properties set  to  true which can be tested
with the adoRSetIsEOF() and adoRSetIsBOF() functions.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-



p159

© Zentel Telecom Ltd, 2009

adoRSetMoveLast
Synopsis:

adoRSetMoveLast(handle)
Arguments:

handle - The recordset handle.

Description:   This function moves the record pointer of the underlying recordset data to the last
record in the recordset.   A call to adoRSetMoveLast() when the recordset is empty will result in an
error.     An empty recordset will  have EOF and BOF properties set  to  true which can be tested
with the adoRSetIsEOF() and adoRSetIsBOF() functions.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetMoveNext
Synopsis:

adoRSetMoveNext(handle)
Arguments:

handle - The recordset handle.

Description:   This function moves the record pointer of the underlying recordset data to the next
record in the recordset.    If the last record is the current record and you call adoRSetMoveNext() ,
ADO sets the current record to the position after the last record in the Recordset and sets EOF to
True.   An attempt to move forward when the EOF property is already True generates an error.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetMovePrev
Synopsis:

adoRSetMovePrev(handle)
Arguments:

handle - The recordset handle.

Description:    This  function  moves  the  record  pointer  of  the  underlying  recordset  data  to  the
previous  record  in  the  recordset.    The  Recordset  object  must  support  bookmarks  or  backward
cursor movement; otherwise, the method call will generate an error. If the first record is the current
record and you call the MovePrevious method, ADO sets the current record to the position before
the first record in the Recordset and sets BOF to True.  An attempt to move backward when the
BOF property is already True generates an error.  If the Recordset object does not support either
bookmarks or backward cursor movement, the MovePrevious method will generate an error.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,



p160

© Zentel Telecom Ltd, 2009

then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetAddNew
Synopsis:

adoRSetAddNew(handle)
Arguments:

handle - The recordset handle.

Description:   This function attempts to add a new record to a recordset as specified by handle.
Use the adoRSetSupports() function with adAddNew (a CursorOptionEnum value) to verify
whether you can add records to the current recordset object.

After you call the adoRSetAddNew() function, the new record becomes the current record and
remains current after you call the adoRSetUpdate() function.    Since the new record is appended to
the recordset, a call to adoRSetMoveNext() following the update will move past the end of the
recordset, making EOF True.    If the recordset object does not support bookmarks, you may not
be able to access the new record once you move to another record.  Depending on your cursor type,
you may need to call the adoRSetRequery() method to make the new record accessible.

If you call adoRSetAddNew() while editing the current record or while adding a new record, ADO
calls the underlying Update method automatically in this case to save any changes and then creates
the new record.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetUpdate
Synopsis:

adoRSetUpdate(handle)
Arguments:

handle - The recordset handle.

Description:    This  function  saves  any  changes  that  have  been  made  to  the  current  record  of  a
recordset object since calling the adoRSetAddNew() function or since changing any field values in
an existing record.    The recordset object must support updates.

If you move from the record you are adding or editing before calling the Update method, ADO will
automatically call Update to save the changes. You must call the adoRSetCancelUpd() function if
you want to cancel any changes made to the current record or discard a newly added record.

The current record remains current after you call the adoRSetUpdate() function.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()



p161

© Zentel Telecom Ltd, 2009

-o-

adoRSetCancelUpd
Synopsis:

adoRSetCancelUpd(handle)
Arguments:

handle - The recordset handle.

Description:   This  function cancels  any changes  made  to  the  current  record  or  discard  a  newly
added record.
 
Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetUpdBatch
Synopsis:

adoRSetUpdBatch(handle,affected)
Arguments:

handle - The recordset handle.

Description:   This function allows multiple changes to one or more records to be cached locally
until you call the adoRSetUpdBatch() function.     If you are editing the current record or adding a
new record when you call the adoRSetUpdBatch() function method, ADO will  automatically call
and   Update  method  to  save  any  pending  changes  to  the  current  record  before  transmitting  the
batched changes  to  the  provider.     Batch  updating  should  be  used  with  either  a  keyset  or  static
cursor only and the lock type should be adLockBatchOptimistic.

If the attempt to transmit changes fails for any or all records because of a conflict with the
underlying data (for example, a record has already been deleted by another user), the provider
returns warnings to the Errors collection and a run-time error occurs.   

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetCancelBatch
Synopsis:

adoRSetCancelBatch(handle,affected)
Arguments:

handle - The recordset handle.

Description:   This function cancels any pending batch updates.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,



p162

© Zentel Telecom Ltd, 2009

then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetDelete
Synopsis:

adoRSetDelete(handle[,affected])
Arguments:

handle - The recordset handle.

Description:   This function marks the current record or a group of records in a recordset object
for deletion. If the recordset object doesn't allow record deletion, an error occurs.    If you are in
immediate  update  mode,  deletions  occur  in  the  database  immediately.    If  a  record  cannot  be
successfully deleted (due to database integrity violations,  for example),  the  record will  remain in
edit mode after the call to adoRSetUpdate().     This means that you must cancel the update with
CancelUpdate  before  moving  off  the  current  record  (for  example,  with  adoRSetClose(),
adoRSetMove() etc).
If you are in batch update mode, the records are marked for deletion from the cache and the actual
deletion happens when you call the adoRSetUpdBatch() function. Use the Filter property to view
the deleted records.

Retrieving field values from the deleted record generates an error. After deleting the current record,
the deleted record remains current until you move to a different record. Once you move away from
the deleted record, it is no longer accessible.

If you nest deletions in a transaction, you can recover deleted records with the 
adoConnTransCancel() function.   If you are in batch update mode, you can cancel a pending
deletion or group of pending deletions with the adoRSetCancelBatch() function.

If the attempt to delete records fails because of a conflict with the underlying data (for example, a
record has already been deleted by another user), the provider returns warnings to the Errors
collection but does not halt program execution.   A run-time error occurs only if there are conflicts
on all the requested records.

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoRSetState
Synopsis:

adoRSetState(SetHandle)
Arguments:

handle - The recordset handle.

Description:   This function is a utility function that returns the value of  the State property of  a
recordset object.          This value can also be obtained by calling the adoRSetParmGet() function
passing the P_RS_STATE constant to retrieve the value.

The returned value will be one of the adObjectState enumeration values as follows:



p163

© Zentel Telecom Ltd, 2009

Constant Value Description 

adStateClosed 0 Indicates that the object is closed.
adStateOpen 1 Indicates that the object is open.
adStateConnecting 2 Indicates that the object is connecting.
adStateExecuting 4 Indicates that the object is executing a command.
adStateFetching 8 Indicates that the rows of the object are being retrieved.

Returns:   Returns the value of the State  property of the recordset object,  or a negative error
code.     If ADOERR_COMERR is returned, then the underlying ADO error can be obtained by
calling adoLastError()

-o-

adoRSetIsBOF
Synopsis:

adoRSetIsBOF(SetHandle)
Arguments:

handle - The recordset handle.

Description:   This function is  a  utility function that  returns the value of  the BOF property of  a
recordset object.          This value can also be obtained by calling the adoRSetParmGet() function
passing the P_RS_BOF constant to retrieve the value.    

The BOF property will be set to true if the record pointer of the recordset is positioned before the
beginning of the data,  and the function will return "1" (true);   

If a recordset does not contain any records then both EOF and BOF will be true.

Note:  ADO uses the value -1 for true and so if adoRSetParmGet() is used then it will be -1 that is
returned if the condition is true, whereas this function will return "1" instead.

If the record pointer is not before the beginning of the data the function will return "0".

Returns:   Returns 1 if the record  pointer is positioned before the beginning of the data, otherwise
returns 0 or a negative error code.   If ADOERR_COMERR is returned, then the underlying ADO
error can be obtained by calling adoLastError()

-o-

Synopsis:
adoRSetIsEOF(SetHandle)

Arguments:
handle - The recordset handle.

Description:   This function is  a  utility function that  returns the value of  the EOF  property of  a
recordset object.          This value can also be obtained by calling the adoRSetParmGet() function
passing the P_RS_EOF constant to retrieve the value.    



p164

© Zentel Telecom Ltd, 2009

The EOF property will be set to true if the record pointer of the recordset is positioned after the
end of the data,  and the function will return "1" (true);   

If a recordset does not contain any records then both EOF and BOF will be true.

Note:  ADO uses the value -1 for true, and so if adoRSetParmGet() is used then it will be -1 that is
returned if the condition is true, whereas this function will return 1 instead.

If the record pointer is not positioned after the end of the data the function will return "0".

Returns:   Returns 1 if the record  pointer is positioned before the beginning of the data, otherwise
returns 0 or a negative error code.   If ADOERR_COMERR is returned, then the underlying ADO
error can be obtained by calling adoLastError()

-o-

adoFldCount
Synopsis:

numfields=adoFldCount(handle)
Arguments:

handle - The recordset handle.

Description:   This  function returns  the  number of  fields  (columns)  in  the  underlying recordset
data.      The names of these fields can then be obtained using the adoFldGetName() function.

Returns:   Returns the number of fields (columns) in the underlying recordset data or a negative
error code.   If ADOERR_COMERR is returned, then the underlying ADO error can be obtained by
calling adoLastError()

-o-

adoFldGetName
Synopsis:

adoFldGetName(handle,ix)
Arguments:

handle - The recordset handle.
ix - The field index (starting from 0)

Description:   This function returns the field name of the field specified by the index value ix for
the  recordset  specifed  by  handle.    Field  index  values  start  from  0  up  to  one  less  that  the  total
number of fields in the recordset.

Returns:   Returns the field name upon success or a negative error code.   If ADOERR_COMERR
is returned, then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoFldGetValue



p165

© Zentel Telecom Ltd, 2009

Synopsis:
adoFldGetValue(handle,ix/name,&pValue)

Arguments:
handle - The recordset handle.

         ix/name - The field index number or field name
pValue - Pointer to the variable that will hold the returned field value

Description:   This function returns the value of the field specified by the field index number (ix)
or the field name for the current record in the recordset specifed by handle.      The function will
detect automatically whether a field index number or field name has been specified.        The value
of the uinderlying field will be returned to the variable pointed to by the pValue argument.

Below is  an  example  showing  this  function  in  use.    This  example  assumes  that  the  underlying
recordset has fields called 'date','time','telno','duration','rate' and 'cost':

    rec_count=adoRsetRecCount(SetHandle);

    

    for(i=0;i<rec_count;i++)

        x=adoRSetMove(SetHandle,-i,adBookmarkLast);

        if(adoRSetIsBOF(SetHandle))

            break;

        endif

        adoFldGetValue(SetHandle,"date",&date);

        adoFldGetValue(SetHandle,"time",&time);

        adoFldGetValue(SetHandle,"telno",&telno);

        adoFldGetValue(SetHandle,"duration",&duration);

        adoFldGetValue(SetHandle,"rate",&rate);

        adoFldGetValue(SetHandle,"cost",&cost);

        applog("Rec ",rec_count-i,": date=",date," time=",time," telno=",strrtrim(telno)," dur=",duration,"

rate=",rate," cost=",cost);

    endfor

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoFldSetValue
Synopsis:

adoFldSetValue(handle,ix/name,Value)
Arguments:

handle - The recordset handle.
         ix/name - The field index number or field name

pValue - Pointer to the variable that will hold the returned field value

Description:   This function sets the value of the field specified by the field index number (ix) or
the field name to the value specified by Value  for  the current record in the recordset specifed by
handle.      The function will detect automatically whether a field index number or field name has
been specified.         

This only updates the fields values in the current copy of the record.   In order to save the values to
the underlying database table then it is necessary to call the adoRSetUpdate() function.   Also if you



p166

© Zentel Telecom Ltd, 2009

move  from  the  record  you  are  adding  or  editing  before  calling  the  Update  method,  ADO  will
automatically call Update to save the changes. You must call the adoRSetCancelUpd() function if
you want to cancel any changes made to the current record.

Below is  an  example  showing  this  function  in  use.    This  example  assumes  that  the  underlying
recordset has fields called 'date','time','telno','duration','rate' and 'cost':

        // Add a new record to the record set

        x=adoRSetAddNew(SetHandle);

        if(x < 0)

            stop;

        endif

        // Set the field values for the new record

        adoFldSetValue(SetHandle,"date","20090101");

        adoFldSetValue(SetHandle,"time","120000");

        adoFldSetValue(SetHandle,"telno","971414292929");

        adoFldSetValue(SetHandle,"duration",26);

        adoFldSetValue(SetHandle,"rate","0.08");

        adoFldSetValue(SetHandle,"cost","0.035");

        // Update the underlying record set

        adoRSetUpdate(SetHandle);

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoFldParmGet
Synopsis:

adoFldParmGet(handle,ix/name,ParmID,pValue)
Arguments:

handle - The recordset handle.
ix/name - The field index number or name
parmID - The parameter ID
pValue - Pointer to the variable that will hold the parameter value

Description:   This function enables the underlying field parameters to be examined for the field
defined by the  field  index number (ix)  or  field  name in  the  recordset  defined by handle.      The
parmID argument  is  the  ID  of  the  parameter  that  is  to  be  read  and  the  pValue  is  a  pointer  to  a
variable that will hold the returned parameter value.       

The parmID should be set to one of the following values as defined in the ado.inc  file  supplied
with the library as follows:

const P_FLD_ACTUALSIZE =201;#Returns the actual length of a field's value 

const P_FLD_ATTRIBUTES =202;#Sets or returns the attributes of a Field object 

const P_FLD_DEFINEDSIZE =203;#Returns the defined size of a field 

const P_FLD_NAME =204;#Sets or returns the name of a Field object 

const P_FLD_NUMERICSCALE =205;#Sets or returns the number of decimal places allowed for

numeric values in a Field object 

const P_FLD_ORIGINALVALUE =206;#Returns the original value of a field 

const P_FLD_PRECISION =207;#Sets or returns the maximum number of digits allowed

when representing numeric values in a Field object 



p167

© Zentel Telecom Ltd, 2009

const P_FLD_STATUS =208;#Returns the status of a Field object 

const P_FLD_TYPE =209;#Sets or returns the type of a Field object 

const P_FLD_UNDERLYINGVALUE =210;#Returns the current value of a field 

const P_FLD_VALUE =211;#Sets or returns the value of a Field object  

The above constants map one-to-one with the corresponding underlying properties from the ADO
_Field object as shown below:

Property Readable WriteableDescription
ActualSize Returns the actual length of a field's value
Attributes Sets or returns the attributes of a Field object
DefinedSize Returns the defined size of a field
Name Sets or returns the name of a Field object
NumericScal
e

Sets or returns the number of decimal places allowed for numeric values in a Field
object

OriginalValu
e

Returns the original value of a field

Precision Sets or returns the maximum number of digits allowed when representing numeric
values in a Field object

Status Returns the status of a Field object
Type Sets or returns the type of a Field object
UnderlyingV
alue

Returns the current value of a field

Value Sets or returns the value of a Field object 

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoFldParmSet
Synopsis:

adoFldParmSet(handle,ix/name,ParmID,Value)
Arguments:

handle - The recordset handle.
ix/name - The field index number or name
ParmID - The parameter ID
Value - The value to set

Description:   This function enables the underlying field parameters to be set for field specified by
the field index (ix) or field name in the recordset defined by handle.     The parmID argument is
the ID of the parameter that is to be set (see adoFldParmGet()) and the Value is the value to set it
to.    Note that this function can be used at any time after the recordset  has been returned by a call
to adoRSetQuery() and can be used to set up the properties of the field.  

Returns:   Returns 0 upon success or a negative error code.   If ADOERR_COMERR is returned,
then the underlying ADO error can be obtained by calling adoLastError()

-o-

adoErrCount
Synopsis:



p168

© Zentel Telecom Ltd, 2009

numErrors=adoErrCount(handle)
Arguments:

handle - The Connection handle.

Description:   This function returns the  number of  errors  in  the  Errors  collection of  underlying
Connection object data.      Information about the errors in the collection can can then be obtained
using the adoErrMessage(), adoErrValue() and adoErrNative() functions.    The Errors collection
provides  the  means to  get  more specific  and detailed data  about  errors  which have  occured on  a
connection.

The Errors collection is maintained on a per connection basis and multiple errors may be inserted
into the Errors collection by the data provider for a single function call.    

The adoErrClear() function allows the error collection to be cleared for a particular connection.

Returns:   Returns the number of errors  in the Errors collection of underlying connection object,
 or a negative error code.   If ADOERR_COMERR is returned, then the underlying ADO error can
be obtained by calling adoLastError()

-o-

adoErrMessage
Synopsis:

message=adoErrMessage(handle,ix)
Arguments:

handle - The recordset handle.
ix - The index into the Errors collection.

Description:   This function returns the text of an error in the Errors collection of the underlying
connection object specified by handle.     The ix argument is the index number of the error (starting
from 0) in the Errors collection to return.

Returns:   Returns the Error message upon success or a negative error code.   If
ADOERR_COMERR is returned, then the underlying ADO error can be obtained by calling 
adoLastError()

-o-

adoErrValue
Synopsis:

value=adoErrValue(handle,ix)
Arguments:

handle - The recordset handle.
ix - The index into the Errors collection.

Description:   This function returns the error value of an error in the Errors collection from the
underlying connection object specified by handle.     The ix argument is the index number of the
error (starting from 0) in the Errors collection to return.



p169

© Zentel Telecom Ltd, 2009

Returns:   Returns the Error code value of the item in the Errors collection.   

-o-

adoErrNative
Synopsis:

NativeValue=adoErrValue(handle,ix)
Arguments:

handle - The recordset handle.
ix - The index into the Errors collection.

Description:    This  function  returns  the  native  error  code  (provider  specific)  of  an  error  in  the
Errors collection from the underlying connection object specified by handle.     The ix argument is
the index number of the error (starting from 0) in the Errors collection to return.

Returns:   Returns the Native Error code value of the item in the Errors collection.   

-o-

adoErrClear
Synopsis:

adoErrClear(handle)
Arguments:

handle - The recordset handle.

Description:    This  function  clears  the  the  Errors  collection  from  the  underlying  connection
object specified by handle, and sets the count to 0.   

Returns:   Returns 0 upon success or a negative error code.

-o-

String Manipulation Library

Introduction
The String Manipulation Library (CXSTRING.DLL) provides various functions for the
manipulation of character strings, such as token extraction,  partial string extraction, case changing
etc.

In addition it provides a number of conversion  routines to allow strings to be converted from and
to hexadecimal or ascii values.

It also provides functions for the manipulation of so called hexi-strings.      Hexi-strings are strings
of hexidecimal characters where two hexidecimal characters of the string represent a single byte
value.      These strings are used in some of the function libraries where it is necessary to set abitary
binary values for various parameters in the library.               



p170

© Zentel Telecom Ltd, 2009

 Here is an example of a hexi-string that is the 4 byte long integer representation of the number 255
in little endian byte order:     

"FF000000"

The hexi-strings are ofter used by function libraries when it is necessary to access the low-level
fields of a communications protocol (such as the information elements of ISDN).     See the Aculab
Call Control Library (CXACULAB.DLL) for examples where hexi-strings are put to use (e.g in the
CCsetparm() function).

-o-

String Library Quick Reference
token=strtok (str,tok_delimiter)
len=strlen(str)
partial_string=strsub(str,start_pos[,end_pos])
true_false=strcnt(str1,str2) 
new_str=strstrip(str[,char])
tail=strend(str,count)
offset=strpos(str1,str2) 
upper_str=strupr(str)
lower_str=strupr(str)
hi_same_low=strcmp(str1,str2)
index=strindex (str,str1[,str2[,str3...]])
selected_str=strselect (index,str1[,str2[,str3....])
new_string=strltrim(str[,char])
new_string=strrtrim(str[,char])
new_string=strrjust(str,char, tot_chars)
new_string=strljust(str,char, tot_chars)
char=itoc(ascii_val)
ascii_val=ctoi(char_str)
hex_val=itox(int_val)
value=xtoi(hex_str)
hexstr=strtohexi(string)
hexstr=inttohexi(unsigned_val,num_bytes)
hexstr=unstohexi(int_val,num_bytes)
string=hexitostr(hexi_str)
int_val=hexitoint(hexi_str,num_bytes)
unsigned=hexitoint(hexi_str,num_bytes)

-o-



p171

© Zentel Telecom Ltd, 2009

String Manipulation Function Reference

strtok
Synopsis:

token=strtok (str,tok_delimiter)

Arguments:
str - The string containing the list of tokens to extract
tok_delimiters - The set of token delimiters to look for. 

Description:    This function searches through the specified str and extracts the tokens one at a
time that are separated the specified token_delimiter.       The first call to strtok() should me made
with both str and tok_delimeter set to empty strings ("").      This causes all internal counters and
data to be reset.     Thereafter the function can be called any number of times to extract the tokens
from the string one at a time until there are no tokens left to extract (after which the function will
return and empty string ("")).

For example,  lets say that we have a string of values speparated by commas and we want to extract
the values from this string one at a time (this is often the case when reading Call Data Records for
billing purposes).    E,g,

CDR="20080320,120603,02082073435,0014153325678,0,360,0.025";

// Reset the strtok() function

strtok("","");

// Extract the fields

Date=strtok(CDR,",");

Time=strtok(CDR,",");

callerID=strtok(CDR,",");

DestNum=strtok(CDR,",");

CallStat=strtok(CDR,",");

Duration=strtok(CDR,",");

Charge=strtok(CDR,",");

Note that the token_delimiter can be a multiple character delimeter, for example:

            // Notice that the fields are separated by two charatecrs ("::")
CDR="20080320::120603::02082073435::0014153325678::0::360::0.025";

// Reset the strtok() function

strtok("","");

// Extract the fields

Date=strtok(CDR,"::");

Time=strtok(CDR,"::");

... etc

Note that for fields separated by tabs, newlines or carriage returns then the escape characters "`t",
"`n" and "`r" can be used as the tok_delimiter.

Returns:   Returns the next token from the string or an empty string ("") if there are no more
tokens to extract.

-o-



p172

© Zentel Telecom Ltd, 2009

strlen
Synopsis:

len=strlen(str)

Arguments:
str - The string whose length to return

Description:  This function returns the number of characters in the given str.

For example:

string="The cat sat on the mat";

// Count how many times "t" occurs

int i;

 int tot;

for (i=1,i<=strlen(string);i++)

if(strsub(string,i,1) streq "t") 

tot+=1;

endif

endif

applog("Number of t's in string=",tot);

Returns:  Returns the number of characters in the given str.

-o-

strsub
Synopsis:

partial_string=strsub(str,start_pos[,end_pos])

Arguments:
str - The string to extract partial string from
start_pos - The starting position from which to extract the partial string (first character is

numbered 1)
[end_pos] - Optional ending position for the partial string extraction

Description:  This function extracts a partial string from the given str using the start_pos and
end_pos to specified the offsets in the str from which to obtain the partial string to return.        The
start_pos must hold a value between 1 and the total number or characters in the string.     The
optional end_pos should hold a value between 1 and the total number or characters in the string and
must be greater than or equal to the start_pos.    If end_pos is not specified then it defaults to the
offset of the last character in the given string and so the partial string returned will be from the 
start_pos to the end of the given str.

If invalid start_pos or end_pos values are given (such as negative values, start_pos > end_pos,
start_pos past end of string etc) then the function will return an empty string.

For example:



p173

© Zentel Telecom Ltd, 2009

string="ABC123ZYX"

// This will return ABC

part_str=strsub(string,1,3);

// This will return 123

part_str=strsub(string,4,6);

// This will return A

part_str=strsub(string,1,1);

// This will return 123ZYZ

part_str=strsub(string,4);

  

Returns:  Returns the partial string as sepcifed by the start_pos and end_pos or an empty string if
invalid parameters are passed.

-o-

strcnt
Synopsis:

true_false=strcnt(str1,str2) 

Arguments:
str1 - The string to search
str2 - The sub-string to search for in str1

Description:   This function searchs through str1 for the first occurance of the sub-string str2.    If
str2 is found in str1 then this function returns 1,  otherwise it will return 0 if str2 was not found in
str1.

For example:

string="the cat sat on the mat";

// This will return 1

true_flase=strcnt(string,"cat");

Returns:  Returns 1 if str1 contains str2 otherwise returns 0

-o-

strstrip
Synopsis:

new_str=strstrip(str[,char])

Arguments:
str - The string from which to strip the characters



p174

© Zentel Telecom Ltd, 2009

[char] - optional argument specify the character to strip from str (defaults to space character)

Description:  This function removed all occurances of the character char from the specified string
str.   If char is not specified then it defaults to the space character.      

For example:

string="the cat sat on the mat";

// This will return "thecatsatonthemat"

new_str=strstrip(string);

// This will return "cat sat on mat"

new_str=strstrip(string,"the ");

Returns:  Returns the new string with specified character stripped out.

-o-

strend
Synopsis:

tail=strend(str,count)

Arguments:
str - The string whose last count characters to return.
count - the number of characters to return at the end of the string

Description:  This function returns the tail end of the specified string str as defined by the
argument count.   If count is more than the number of characters in the string then the entire string
will be returned.

For example:

string="the cat sat on the mat"

// This will return "mat"
tail=strend(string,3);

// This will return "on the mat"
tail=strend(string,10);

// This will return "the cat sat on the mat"
tail=strend(string,200);

Returns:  Returns the tail end of the string str with the number of characters specified by count.

-o-

strpos



p175

© Zentel Telecom Ltd, 2009

Synopsis:
offset=strpos(str1,str2) 

Arguments:
str1 - The string to search
str2 - The sub-string to search for in str1

Description:   This function searchs through str1 for the first occurance of the sub-string str2.    If
str2 is found in str1 then this function returns the character offset in str1 where the first occurance
of str2 was found,  otherwise it will return 0 if str2 was not found in str1.

For example:

string="the cat sat on the mat";

// This will return offset 5

offset=strcnt(string,"cat");

Returns:  Returns the offset of the first occurance of str2 within str1, or 0 if str2 is not found
within str1. 

-o-

strupr
Synopsis:

upper_str=strupr(str)

Arguments:
str - The string to convert to upper case

Description:  This function converts the specified string str to upper case characters.

For example:

string="the cat sat on the mat"

// This will return "THE CAT SAT ON THE MAT"

upper_str=strupr(string);

Returns:  Returns the str with all lower case characters converted to upper case.

-o-

strlwr
Synopsis:

lower_str=strupr(str)



p176

© Zentel Telecom Ltd, 2009

Arguments:
str - The string to convert to lower case

Description:  This function converts the specified string str to lower case characters.

For example:

string="THE CAT SAT ON THE MAT"

// This will return "the cat sat on the mat"

upper_str=strlwr(string);

Returns:  Returns a string  with all upper case characters converted to lower case.

-o-

strcmp
Synopsis:

hi_same_low=strcmp(str1,str2)

Arguments:
str1 - The first string to compare
str2 - The second string to compare

Description:  This function carries out an alphabetical comparison between str1 and str2 and will
return the following values based upon the result of the comparison:

If str1 > str2 the function will return 1
If str1 = str2 the function will return 0
If str1 < str2 the function will return -1

For Example:

str1="ABC";

str2="BBC"

// This will return 1

hi_same_low=strcmp(str,str2);

str1="BBC"

str2="BBC"

// This will return 0

hi_same_low=strcmp(str,str2);

str1="BBC"

str2="ABC";

// This will return -1

hi_same_low=strcmp(str,str2);

// Note that because the comparison is done alphabetically then str1 < str2 in the following
str1="01999";
str2="1";
// This will return -1

hi_same_low=strcmp(str,str2);



p177

© Zentel Telecom Ltd, 2009

Returns:  Returns 1, 0 or -1 depending on whether str1 > str2, str1 = str2 or str1 < str2.

-o-

strindex
Synopsis:

index=strindex (str,str1[,str2[,str3...]])

Arguments:
str - The string to match
str1 - The first comparison string
[str2] - The second comparison string
[str3] - The third comparison string
...

Description: This function compares the given string, str, against the set of other strings, str1, str2,
str3... etc and will return the index number of the first string that matches str.    The index ranges
from 1 upwards for str1  onwards.    If none of the strings, str1, str2, str3... etc match the given
string, str,  then the function will return 0.

For example:

string="MAR";

// This will return 3

which_month=strindex(string,"JAN","FEB","MAR","APR","MAY","JUN","JUL","AUG","SEP","OCT","NOV","DE

C");

Returns:  Returns the index 1, 2, 3.. of the first string str1, str2 ,str2… to match str, or 0 if the
string is not found in the list.

-o-

strselect
Synopsis:

selected_str=strselect (index,str1[,str2[,str3....])

Arguments:
index -  The index (starting from 1) of the string to select
str1 - The first string
[str2] - The second string
[str3] - The third string
... etc

Description:  This function will select and return the string str1, str2, str3... depending upon the
value of index.       If index is 1 then str1 will be returned, if index is 2 then str2 will be returned
etc.      If an invalid index is given then the function will return an empty string ("").



p178

© Zentel Telecom Ltd, 2009

Returns: Returns str1 if index is 1, str2 if index is 2, and so on.  If index is < 1 or > number of
string arguments given, then an empty string is returned.

-o-

strltrim
Synopsis:

new_string=strltrim(str[,char])

Arguments:
str - The string from which to strip the given character
[char] - Optional argument giving the character to strip from the left side of the string

(defaults to space character).

Description:  This function strips the given char  from the left side of the given string, str.   If char
is not specified then it defaults to the space character.

For example:

string="          the cat sat on the mat";

// This will return "the cat sat on the mat"

new_str=strltrim(str);

string="00001234";

// This will return "1234"

new_string=strltrim(string,"0");

Returns:  Returns the new string with all char removed from the beginning of the string.

-o-

strrtrim
Synopsis:

new_string=strrtrim(str[,char])

Arguments:
str - The string from which to strip the given character
[char] - Optional argument giving the character to strip from the right hand side of the string

(defaults to space character).

Description:  This function strips the given char  from the right hand side (the end) of the given
string, str.   If char is not specified then it defaults to the space character.

For example:

string="the cat sat on the mat             ";



p179

© Zentel Telecom Ltd, 2009

// This will return "the cat sat on the mat"

new_str=strltrim(str);

string="1234!!!!!!!!!";

// This will return "1234"

new_string=strltrim(string,"!");

Returns:  Returns the new string with all char removed from the end of the string.

-o-

strrjust
Synopsis:

new_string=strrjust(str,char, tot_chars)

Arguments:
str - The string to pad with char at the beginning
char - The character to insert at the beginning of the string
tot_chars - How big the string should be after padding

Description:   This function right justifies the given string to the length specified by tot_chars by
padding the beggining of the string, str, with char.     If the string, str, already contains the same or
more characters that specified in tot_chars then the sting str will be returned unchanged.

For example:

// This will return "00000023"

new_str=strrjust("23","0",8);

// This will return ***ABC

new_str=strrjust("ABC","*",6);

// This will return ABCDEF

new_str=strrjust("ABCDEF","*",6);

Returns:  Returns the given string right justified with with the character char up to the number of
characters specified by tot_chars

-o-

strljust
Synopsis:

new_string=strljust(str,char, tot_chars)

Arguments:
str - The string to pad with char at the end
char - The character to insert at the end of the string
tot_chars - How big the string should be after padding

Description:   This function left justifies the given string to the length specified by tot_chars by
padding the end of the string, str, with char.     If the string, str, already contains the same or more



p180

© Zentel Telecom Ltd, 2009

characters that specified in tot_chars then the sting str will be returned unchanged.

For example:

// This will return "ABC   "

new_str=strljust("ABC"," ",6);

// This will return "ABC***"

new_str=strljust("ABC","*",6);

// This will return ABCDEF

new_str=strljust("ABCDEF","*",6);

Returns:  Returns the given string left justified with with the character char up to the number of
characters specified by tot_chars

-o-

itoc
Synopsis:

char=itoc(ascii_val)

Arguments:
ascii_val - The ascii value to convert into a character

Description: This function converts the ascii value passed to the function into a string containing a
single character which is the ASCII character represesent by the value given by ascii_val.      If zero
or an invalid ascii value ( < 0 or > 255) is given then the function will return an empty string.

For example:

// This will return " " (space)
char=itoc(32);

// This will return "A"
char=itoc(65);

// This will return "0"
char=itoc(0x30);

Returns:  Returns a single character string which is the ASCII character represented by the value
ascii_val.

-o-

ctoi
Synopsis:

ascii_val=ctoi(char_str)



p181

© Zentel Telecom Ltd, 2009

Arguments:
char_str - The character to convert to an ASCII value.

Description:   This function returns the ASCII value of the first character of the string, char_str.

For example:

// This will return 65
ascii_val=ctoi("A");

// This will return 48
ascii_val=ctoi("0123");

Returns:   Returns the ASCII value of the first character of char_str.

-o-

itox
Synopsis:

hex_val=itox(int_val)

Arguments:
int_val - The value to convert to hexadecimal

Description: This function converts the integer value represented by int_val into a string
containing the hexadecimal equivalent.

For example:

// This will return 10

hex_val=itox(16);

// This will return "FF"

hex_val=itox(255);

// this will return "101"

hex_val=itox(257);

Returns:  Returns atring containing the hexadecimal equivalent of the int_val vlaue.

-o-

xtoi
Synopsis:

value=xtoi(hex_str)

Arguments:
hex_str - The hexadecimal string to convert to a decimal integer



p182

© Zentel Telecom Ltd, 2009

Description:  Converts the hexadecimal value in the string hex_str to a decimal integer.

For Example:

// Returns 255
value=xtoi("FF");

// Returns 11
value=xtoi("b");

Returns:  Returns the decimal integer equivalent of the hexadecimal number passed in the hex_str
argument.

-o-

strtohexi
Synopsis:

hexstr=strtohexi(string);

Arguments:
string - The string to convert to a hexadecimal string

Description:  This function converts the string argument into the corresponding hexadecimal
string.    Each character of the string will be converted to exactly two hexadecimal characters in the
returned string corresponding to the ASCII values of the string.      This function is useful in a
number of other library functions (such as the CCsetparm() function) where a hexadecimal string is
required for a parameter value.

Examples:

      // This will return hex_str="343432303832323232"

hex_str=CCstrtohex("442082222");

// This will return hex_str="010fffde"

hex_str=CCstrtohex("̀ 01̀ 0f̀ ff̀ de");

Returns:  Returns the hexadecimal string representation of the ASCII values of the characters in
the sting argument.

-o-

inttohexi
Synopsis:

hexstr=inttohexi(unsigned_val,num_bytes);



p183

© Zentel Telecom Ltd, 2009

Arguments:
int_val - The integer value to convert to a hexadecimal string
num_bytes - Set to 1, 2 or 4 for byte, short integer or long integer value

Description:  This function converts the integer value int_val argument into the corresponding
hexadecimal string .       The num_bytes argument defines whether the integer should be treated as a
1 byte (char), 2 byte (short) or 4 byte (long) integer and will thus be converted into a 2,4 or 8
character hexidecimal string respectively.

Each byte of the integer will be converted to exactly two hexadecimal characters in the returned
string in little endian byte order (i.e byte order will be low to high).      This function is useful in
some of the other library functions (such as the CCsetparm() function) where a hexadecimal string
is required for a parameter value.

Examples:

      // This will return hex_str="ff"

hex_str=CCinttohex(255,1);

      // This will return hex_str="ff00"

hex_str=CCinttohex(255,2);

      // This will return hex_str="ff000000"

hex_str=CCinttohex(255,4);

      // This will return hex_str="80000000"

hex_str=CCinttohex(-128,4);

Returns:  Returns the hexidecimal string representation of the given integer

-o-

unstohexi
Synopsis:

hexstr=unstohexi(int_val,num_bytes);

Arguments:
unsigned_val - The unsigned integer value to convert to a hexadecimal string
num_bytes - Set to 1, 2 or 4 for byte, short integer or long integer value

Description:  This function converts the unsigned integer value unsigned_val argument into the
corresponding hexadecimal string.       The num_bytes argument defines whether the integer should
be treated as a 1 byte (char), 2 byte (short) or 4 byte (long) integer and will thus be converted into a
2,4 or 8 character hexidecimal string respectively.        Note that if a negative number is passed to
the function then this will be converted to an unsigned integer first which will result in an interger
overflow.

Each byte of the integer will be converted to exactly two hexadecimal characters in the returned
string in little endian byte order (i.e byte order will be low to high).      This function is useful in
some other library functions (such as the CCsetparm() function)  where a hexadecimal string is
required for a parameter value.



p184

© Zentel Telecom Ltd, 2009

Examples:

      // This will return hex_str="ff"

hex_str=CCunstohex(255,1);

      // This will return hex_str="ff00"

hex_str=CCunstohex(255,2);

      // This will return hex_str="ff000000"

hex_str=CCunstohex(255,4);

      // This will return hex_str="ffffffff" since a -ve integer will overflow when converted to unsigned

hex_str=CCunstohex(-1,4);

Returns:  Returns the hexidecimal string representation of the given unsigned integer

-o-

hexitostr
Synopsis:

string=hexitostr(hexi_str)

Arguments:
hexi_str - The hexadecimal string of ASCII values to convert to a character string

Description:   This function converts a hexadecimal string (where two hex characters represent a
single byte) into a character string.

For Example:

// This will return "012345678"

string=hexitostr("30313233343536373839")

// This will return "ABCDEF"

string=hexitostr("414243444546")

Returns:  Returns the character string represented by the hexadecimal string of ASCII values..

-o-

hexitoint
Synopsis:

int_val=hexitoint(hexi_str,num_bytes)

Arguments:
hexi_str - The hexadecimal string to convert
num_bytes - The number of bytes to convert (either 1,2 or 4)

Description:  This function converts a hexidecimal string into its decimal equivalent.   The
hexi_str value must be specified in little endian format (i.e lowest to highest byte order).    The



p185

© Zentel Telecom Ltd, 2009

num_bytes argument specifies whether 1, 2 or 4 bytes are to be converted.     If an invalid
num_bytes  value is given then it is assume to be a 1 byte conversion.

For example:

// This returns -1
int_val=hexistoint("FF",1);

// This returns 255
int_val=hexistoint("FF00",2);

 // This returns -1
int_val=hexistoint("FFFF",2);

// This returns 65535
int_val=hexistoint("FFFF0000",4);

// This returns -268435456
int_val=hexistoint("00000010",4);

Returns:   Returns the decimal integer equivalent of the given hexi_str.

-o-

hexitouns
Synopsis:

unsigned=hexitoint(hexi_str,num_bytes)

Arguments:
hexi_str - The hexadecimal string to convert
num_bytes - The number of bytes to convert (either 1,2 or 4)

Description:  This function converts a hexidecimal string into its unsigned decimal integer
equivalent.   The hexi_str value must be specified in little endian format (i.e lowest to highest byte
order).    The num_bytes argument specifies whether 1, 2 or 4 bytes are to be converted.     If an
invalid num_bytes  value is given then it is assume to be a 1 byte conversion.

For example:

// This returns 255
int_val=hexistoint("FF",1);

// This returns 255
int_val=hexistoint("FF00",2);

 // This returns 65535
int_val=hexistoint("FFFF",2);

// This returns 65535
int_val=hexistoint("FFFF0000",4);

// This returns 268435456
int_val=hexistoint("00000010",4);



p186

© Zentel Telecom Ltd, 2009

Returns:   Returns the unsigned decimal integer equivalent of the given hexi_str.

-o-

Inter-task Messaging Library

Introduction
The Inter-task Messaging library (CXMSG.DLL)  provides  the  means  to  pass  messages  between
Telecom  Engine  tasks.      Either  the  process  ID  of  the  task  or  the  task  name  (if  set  by
msg_setname() is called) can be used to identify a particular task to send a message to. 

The sending side would then use the msg_send() function to send a string message to the recieving
task.    The receiving task must use msg_read() to then retrieve the message.         All messages will
be  received in  the  order  that  they are  send  and  they will  be  added  sequentially to  a  queue  if  the
receiving task is not already waiting for the message by a call to msg_read().  

It  is  important  that  the  receiving  task  retrives  the  incoming  messages  before  the  the  incoming
message  queue  gets  full.     By  default  the  maximum  number  of  messages  that  can  be  in  the
incoming message queue for  all  tasks  is   512 messages.      If  this  limit  is  reached then  an  error
message is generated and the current message queue is dumped to the system tracelog,  however on
this  first  occasion  the  message  queue  is  automatically  increased  to  hold  1536  messages  and  the
msg_send() function will still complete sucecssfully.    

If however this  new message queue limit  is  reached then all  further  calls  to  msg_send() will  fail
and an error message will be sent to the system error log.

Note that when a task is killed (either by a specific task_kill() function call, or implicitly after a 
stop  or restart statement or a call to task_chain()) then all messages destined for that task that are
waiting in the message queue will be deleted.

Note that is is possible that one task may attempt to send a message to another task using the task
ID,  but the task that the message was destined for has recently been stopped and another task has
started running using the same task ID.        In this situation an unexpected message may appear in
the message queue for the newly started task.         Programmers should take care to handle this
situation by calling msg_flush() prior to calling msg_send()/msg_read() for the first time to ensure
that there are no stry messages in the tasks message queue.      This still could leave a small
window of opportunity for a stray message to arrive after the call to msg_flush() and so other
mechanisms may be taken (such as using a session number in the send/received messages) to cover
this rare eventuality if it could cause problems/bugs to occur .

For example here is some code that requests a server task to return some kind of resource (E.g. an
outbound channel)..  This code covers all the eventuallities mentioned above about stray
messages and uses a session number of correlate sent and received messages and the programmer
should implement similar mechanisms to ensure correct code for this kind of functionality.



p187

© Zentel Telecom Ltd, 2009

// Clear any stray messages in the message queue

msg_flush();

  // Get a unique session ID

session_id=get_unique_number();

// Send a message to the resource handler to get the resource

x=msg_send("resouce_task","GET," & session_id);

if(x < 0)

errlog("Failed to send message: err=",x);

// Force jump to onsignal function to clear down call...

task_hangup(task_getpid());

endif

// Now wait up to 10 seconds for response

resp_str=msg_get(10);

// resp should be in the form RSP,session_id,resource

strtok("","");

resp=strtok(resp_str,",");

resp_sess=strtok(resp_str,",");

resp_resource=strtok(resp_str,",");

// Check that this message is a valid response to our request

if(resp strneq "RSP" or resp_sess!=session_id)

errlog("Got a bad message!  msg was ", resp_str);

// Force jump to onsignal function to clear down call...

task_hangup(task_getpid());

endif

ETC...

-o-

Inter-task Messaging Libary Quick Reference
result=msg_setname(name)
msg_str=msg_read(timeout[,ms_flag]);
result=msg_send(task_name/task_id,msg_str);
msg_flush()
task_id=msg_senderid()
task_id=msg_sendername()
free_count=msg_freecount()

-o-



p188

© Zentel Telecom Ltd, 2009

Inter-task Messaging Function Reference

msg_setname
Synopsis:  

result=msg_setname(name)

Arguments:  
name - The name to associate with the calling task

Description: This function sets a name to associate with the calling task for use in calls to
msg_send().     Note that msg_send() can use either the Telecom Engine Task ID or this name after
this call has been made.           The name used must be a unique name and an error will be
generated if more than one task try to use the same task name.

The task name must begin with a non-numeric character, since calls to msg_send() with a
task_id/name starting with a numerical character will be assumed to be passing the task ID rather
than the name.

The maximum length of the task name is 32 characters.   IF more characters than this are given for
the task name then it will be truncated.

For example

// This sets the name for the calling task to "resource_handler"
x=msg_setname("resource_handler");

Now other tasks can send messages to the task that made the above call using the task name, e.g.

// Send a message to the task whose name was set to "resource_handler"
msg_send("resource_handler","GET");

Returns:   Returns 0 if successfull or -1 if the task name already exists

-o-

msg_read
Synopsis:  

msg_str=msg_read(timeout[,ms_flag]);

Arguments:  
timeout - This is the time to wait for a message to arrive in seconds (or millisecs if ms_flag is

set)
[ms_flag] - If this is set to a non-zero value then the timeout 

Description:  This function blocks and waits for an incoming message.     The timeout argument
specifies the time that the function should wait for a message to arrive in seconds (or if ms_flag is
set then the timeout is specified in milliseconds).        If there is already a message waiting for the



p189

© Zentel Telecom Ltd, 2009

task in the message queue then the function will return immediately with the received message.   If
the timeout period is exceeded before a message is received then the function returns an empty
string.

For example:

// Loop forever waiting for messages

while(1)

// Wait 60 seconds for a message to arrive

msg_str=msg_read(60);

if(msg_str streq "")

applog("No message received yet!");

continue;

else 

// we have got a message so process it..

.... ETC

endif

endwhile

Returns:   Returns the received message or a blank string it timeout occurs

-o-

msg_send
Synopsis:  

result=msg_send(task_name/task_id,msg_str);

Arguments:  
task_name/task_id - Either the task name or the Telecom Engine Task ID of the task to send

the message to
msg_str - The message to send

Description:  This function sends a message to the task specified be the task_name/task_id.     If a
task calls the msg_setnname() function then this name can be used to identify the task, otherwise
the Telecom Engine task ID (as returned from task_spawn() or task_getpid()) should be used.

If the task_name/task_id does not exist then the function will return -1.

Returns:   Returns 0 if successful or -1 if an invalid task_name/task_id wa specified.

-o-

msg_flush
Synopsis:  

msg_flush()

Arguments:  
none

Description:  This function flushes all pending messages from the message queue for the calling



p190

© Zentel Telecom Ltd, 2009

task.

Returns:   Nothing

-o-

msg_senderid
Synopsis:  

task_id=msg_senderid()

Arguments:  
none

Description: This function returns the Telecom Engine task id for the task that sent the last
message to the calling task.    This function can be used to determine where to send a return
message to after receiving a message.

For example:

msg_str=msg_read(30);

// If a message was received..

if(msg_str strneq "")

// Get the task ID of the sending task

return_id=msg_senderid();

// Send back an ACK message

msg_send(return_id,"ACK");

endif

Returns:   Returns the task ID of the task that sent the last message received by the calling task or
-1 if no messages have been received.

-o-

msg_sendername
Synopsis:  

task_id=msg_sendername()

Arguments:  
none

Description: This function returns the task name (as set by a call to msg_setname()) for the task
that sent the last message to the calling task.    This function can be used to determine where to
send a return message to after receiving a message.

For example:

msg_str=msg_read(30);

// If a message was received..

if(msg_str strneq "")

// Get the task ID of the sending task



p191

© Zentel Telecom Ltd, 2009

return_name=msg_sendername();

// make sure the return name is not blank

if(return_name streq "")

// use the task ID instead

return_name=msg_senderid();

endif

// Send back an ACK message

msg_send(return_name,"ACK");

endif

Returns:   Returns the task name of the task that sent the last message received by the calling task,
a blank string if no name was set or a -1 if no messages have been received.

-o-

msg_freecount
Synopsis:  

free_count=msg_freecount()

Arguments:  

none

Description:  This function returns the number of free slots in the message queue.     If messages
are sent to a task faster than they can be picked up (or if the receiving task is not picking up
messages at all), then the number of free message slots will gradually reduce until the message
queue is full.    If this is the case then this function will return 0.

Sometimes during load testing and diagnostic stages of development it might be useful to print the
result of this call to the screen to check that message queues are being serviced quickly enough and
that the number of free slots does not drop to zero or a low level due to some kind of bottleneck is
the program.

Returns:   Returns the number of free message slots in the message queue.

-o-

Global Array Library

Introduction
The Global Variable Library (CXGLB.DLL) provides a set arrays which are accessible to all tasks
to allow global data to shared.     

There are two types of Global array that are made available by this library.     There is one static
global array that contains 1024 elements, each of length 255 characters that can be retreived or set
by the glb_get() and glb_set() functions.



p192

© Zentel Telecom Ltd, 2009

Secondly, there are a set of functions that provide the means to dynamically create and access
multi-dimensional arrays of strings.

All the arrays handled by this library a globally accessible from all tasks in the Telecom Engine.

-o-

Global Array Library Quick Reference
glb_set(index,string)
string=glb_get(index)
result=array_dim(array_name,dim0[,dim1,dim2..],size)
result=array_free(array_name)
result=array_set(array_name,index0[,index1,...],value)
value=array_get(array_name,index0[,index1,...])
result=array_search(array_name,search_order,value)
result=array_srchset(array_name,search_order,value,set_value)

-o-

Global Array Function Reference

glb_set
Synopsis:  

glb_set(index,string)

Arguments:
index - This is the index into the static global array (from 0 to 1023)
string - This is the string value to set the specified global array element to.

Description:   This function allows for an element of the static global array to be set.     The index
to the global array runs from 0 to 1023 (giving a maximum of 1024 elements).        The maximum
length of each string in the global array is 255 characters.

Returns:    0 if successful, -1 if an invalid element is specified.

-o-

Synopsis:  
string=glb_get(index)

Arguments:



p193

© Zentel Telecom Ltd, 2009

index - This is the index into the static global array (from 0 to 1023)

Description:   This function returns the value from the static global array.     If the element of the
array has not previously been set by a call to glb_set(), or if an invalid index is given then the
function will return an empty string.       The index to the global array runs from 0 to 1023 (giving a
maximum of 1024 elements).        The maximum length of each string in the global array is 255
characters.

Returns:    Returns the value of the global array element specified by the index.

-o-

array_dim
Synopsis:  

result=array_dim(array_name,dim0[,dim1,dim2..],size)

Arguments:
array_name - The name of the array
dim0 - The size of the first dimension of the array
[dim1] - Optional size of second array dimension
[dim2] - Optional size of the third array dimension
.. ETC
size - Size of the string element of the array

Description:   This function allows for a multi-dimensional array (with the name array_name) to
be created where the dimensions are specified by dim0, dim1, dim2... etc.    The size argument
defines the size of the string for the array elements.

The array_name can be up to 32 characters long and is used to reference the array in the other array
function calls such as array_set(), array_get() etc.

Arrays of any number of dimensions can be defined by specifying more dimension parameters in
the dim0, dim1, dim2... etc list.

Below is an example of a one dimensional array:

// Creates a one dimensional array for resource management (element string length =1)

x=array_dim("RESOURCE_ARRAY",1024,1);

// Set an element of this array to 1 to mark the resource as "in-use"

array_set("RESOURCE_ARRAY",0,"1");

Below is an example of a two dimesional array:

// Create an array to hold data for a text screen console (25 rows x 80 cols)

x=array_dim("SCREEN1",25,80,1);

// Set the characters of the top line of the screen array to "_"

for(i=0;i<80;i++)

array_set("SCREEN1",0,i,"_");

endfor



p194

© Zentel Telecom Ltd, 2009

Below is an example of a three dimensional array

// Create an array to hold 3d co-ordinate space (100x100x100)

x=array_dim("3DSPACE",100,100,100,1);

// Set co-ordinate (10,20,5) to 1

array_set("3DSPACE",10,20,5,"1");

Returns:    Returns 0 if successful or -1 if the array failed to be allocated (E.g. out of memory
error)

-o-

array_free
Synopsis:  

result=array_free(array_name)

Arguments:
array_name - The name of the array to free

Description:   This function releases a previous allocated array and free up the dynamically created
memory.       

Returns:    0 if successful or -1 if an invalid array_name was specified.

-o-

array_set
Synopsis:  

result=array_set(array_name,index0[,index1,...],value)

Arguments:
array_name - The array name as previouslydefined by a call to array_dim()
index0 - The first index specifier
[index1] - The Optional second index specifier
[index2] - The Optional third index specifier
.. ETC
value - The value to set the array element to

Description:   This function allows an element of an array previously created by a call to
array_dim() to be assigned.       The array_name specifies the name of the array and must
correspond to the name given when the array was created.    The index0[, index1[, index2...etc]]
indexes specify the element of the array to set and the number of indexes given must correspond to
the number of indexes specified when the array was created.

The value argument is the string value that will be set in to the array.

Returns:    Returns 0 on success or -1 if an invalid array_name  was given or an invalid number of



p195

© Zentel Telecom Ltd, 2009

indexes.

-o-

array_get
Synopsis:  

value=array_get(array_name,index0[,index1,...])

Arguments:
array_name - The array name as previouslydefined by a call to array_dim()
index0 - The first index specifier
[index1] - The Optional second index specifier
[index2] - The Optional third index specifier
.. ETC

Description:   This function allows the value from an element of an array previously created by a
call to array_dim() to be retrieved.       The array_name specifies the name of the array and must
correspond to the name given when the array was created.    The index0[, index1[, index2...etc]]
indexes specify the element of the array to get and the number of indexes given must correspond to
the number of indexes specified when the array was created.

Returns:    Returns the value of the element at the specified indexes or a blank string if if an
invalid array_name  was given or an invalid number of indexes was specified.

-o-

array_search
Synopsis:  

result=array_search(array_name,search_order,value)

Arguments:
array_name - The array name as previouslydefined by a call to array_dim()
search_order - Search order (-1 for bottom up, -3 for search next)
value - The value to search for in the array

Description:   This function allows for a one-dimensional array to be searched for a particular
value.       Note that only one-dimensional arrays are supported by this function.      The search
order defines how the array is to be searched and can be set to one of the following values:

-1 -  Search for the first entry from the bottom up that matches the value
-2 - Top down search (NOT CURRENTLY SUPPORTED)
-3 - Search for then next match starting from the last match found
-4 - search for the previous value (NOT CURRENTLY SUPPORTED)

If -1 is specified then the search will always begin at element 0 of  the index of the array and then
cycle through the last index of the array until the end of the array is reached looking for a match for
the specified value.     

IF -2 is specified then the last position where a match was found will be remembered and the next



p196

© Zentel Telecom Ltd, 2009

time the function is call the search will continue from that position and then wrap around to the
beginning again.

The function will return the index number of the element that matches the value specified by the 
value argument.  otherwise it will return -1

For example:

// Create a one dimensional array 

x=array_dim("RESOURCE",100,1);

            // Set some elements of the array to 1.

array_set("RESOURCE",10,"1");

array_set("RESOURCE",20,"1");

array_set("RESOURCE",30,"1");

    

// Search the RESOURCE array for the first element set to 1

// This will return 10

index=array_search("RESOURCE",-1,"1");

// This will return 10 since as well since we specified -1 for the search order which always searches

from 0 upwards

index=array_search("RESOURCE",-1,"1");

// This will return 20 since we are now specifying to search for the next entry that matches after the

last match (ie. search order -3)

index=array_search("RESOURCE",-3,"1");

// This will return 30 since we are now specifying to search for the next entry that matches after the

last match (ie. search order -3)

index=array_search("RESOURCE",-3,"1");

Returns:     Returns the index where a match was found or -1 is no match was found

-o-

array_srchset
Synopsis:  

result=array_srchset(array_name,search_order,value,set_value)

Arguments:
array_name - The array name as previouslydefined by a call to array_dim()
search_order - Search order (-1 for bottom up, -3 for search next)
value - The value to search for in the array
set_value - The vlaue to set the element to that matched the search for value

Description:   This function allows for a one-dimensional array to be searched for a particular
value and if an entry is found that matches the given value then that element is set to the new
set_value value.       Note that only one-dimensional arrays are supported by this function.      The
search order defines how the array is to be searched and can be set to one of the following values:

-1 -  Search for the first entry from the bottom up that matches the value
-2 - Top down search (NOT CURRENTLY SUPPORTED)
-3 - Search for then next match starting from the last match found
-4 - search for the previous value (NOT CURRENTLY SUPPORTED)



p197

© Zentel Telecom Ltd, 2009

If -1 is specified then the search will always begin at element 0 of  the index of the array and then
cycle through the last index of the array until the end of the array is reached looking for a match for
the specified value.     

IF -2 is specified then the last position where a match was found will be remembered and the next
time the function is call the search will continue from that position and then wrap around to the
beginning again.

The function will return the index number of the element that matches the value specified by the 
value argument.  otherwise it will return -1.

This function is often used for maintaining resources where it is necessary to search for and set an
array element in a single atomic operation.

For example:

// Create a one dimensional array 

x=array_dim("RESOURCE",100,1);

// Search for the first element that has a blank string and set it to 1

index=array_srchset("RESOURCE",-1,"",1);

if(index >= 0)

           // we have found a free resource in the array (and it is now set to 1 to mark it as busy..

... etc

endif

Returns:     Returns the index where a match was found or -1 is no match was found

-o-

Semaphore Library

Introduction
The Semaphore Library (CXSEM.DLL) provides semaphore functional to provide for critial
sections within the code where it is necessary to ensure that only one task is accessing a particular
data object or excecuting a particular set of code.

A semaphore is a special type of variable that can hold one of two values (set or unset) and can
protect a section of code from being excecuted when another task has set the semaphore by
providing functions that wait, check and set a semaphore and/or wait until a semphore is clear
before allowing a process to enter the critical section.

The functions in this library rely on a fixed set of 1024 semaphores numbered 0 through to 1023.    
  Each function takes one of these semaphore IDs as a function argument.

Note that the functions in this library are sensitived to the kill signal.   If a task is killed (either by



p198

© Zentel Telecom Ltd, 2009

an expicit external task_kill() call, by exceuting a stop or restart statement or by chaining to
another task) then any semaphores that have been set by the task will be cleared and it will be
removed from any queues wiating for semaphores.

-o-

Semaphore Library Quick Reference
sem_test(sem_id)
sem_set(sem_id)
sem_clear(sem_id)
sem_clrall()

-o-

Semaphore Function Reference

sem_test
Synopsis:  

sem_test(sem_id)

Arguments:
sem_id - The semaphore ID.

Description:   The first task that calls this function will cause the value of the specified semaphore
(sem_id) to be set and the function will return 1 to indicate that the calling task sucessfully caused
the semaphore to be set.       If the semaphore had already been set by another task then the
semaphore will remain unchanged and the return value form the function will be 0.

This allows for a quick check of the status of a semaphore to be carried out, but does not provide
any kind of waiting or queuing mechanism.     To wait in a queue for a semaphore to be released
then the sem_set() function should be used.

Returns:    1 if the semaphore was successfully set by the calling task, 0 if another task has already
set the semaphore, -1 if an invalid semaphore ID is specified.

-o-

sem_set
Synopsis:  

sem_set(sem_id)

Arguments:
sem_id - The semaphore ID.



p199

© Zentel Telecom Ltd, 2009

Description:   The first task that calls this function will cause the value of the specified semaphore
(sem_id) to be set and the function will return 1 to indicate that the calling task sucessfully caused
the semaphore to be set.       If the semaphore had already been set by another task then the
semaphore will remain unchanged and the calling task will block and will be entered into a queue
waiting for the semaphore to be cleared.          When the calling task reaches the top of the queue
and sets the semaphore the task will be unblocked and the function will return 1.

Note that this function also carries out a rudimentary check for deadlock.    If an attempt to set a
semaphore is carried out by a task (task 1), but the semaphore has already been set by another task
(task 2),  then before putting task 1 into a blocking state a check is made to ensure that task 2 isn't
already waiting on a semaphore that has been set previously by task 1 (deadlock condition).       If
this condition is found the then function will output an error message and will return -2.

Note that if a task is killed (either through an external kill command, a stop statement, a restart
statemetn or by chaining to another task) then all semaphore that the task had previously set will be
cleared and it will be removed from any queues waiting for semaphores.

Returns:    1 if the semaphore was successfully set by the calling task, -1 if an invalid semaphore
ID is specified,  -2 if a deadlock condition would have occurred if the task had blocked.

-o-

sem_clear
Synopsis:  

sem_clear(sem_id)

Arguments:
sem_id - The semaphore ID.

Description:   This function clears a semaphore that was previous set by the calling task.     If an
attempt is made to slear a semephore that was not previously set by the calling task then a error
message is generated and the function will return -3.

Returns:    0 if the semaphore was successfully cleared by the calling task,  -1 if an invalid
semaphore ID is specified, -3 if the semaphore was not set by the calling task.

-o-

sem_clrall
Synopsis:  

sem_clrall()

Arguments:
NONE

Description:   This function clears all semaphores that have been previous set by the calling task. 
 



p200

© Zentel Telecom Ltd, 2009

Returns:    Always returns 0.

-o-

Clipper Database Library

Clipper Database Library Quick Reference
db_handle=db_open(filename,type,mode)
retval=db_ixopen(db_handle,field_nr/name,ntxfilename)
rec_handle=db_get(db_handle,recno[,lock])
rec_handle=db_append(db_handle)
value=db_fget(rec_handle,fieldnr/name[,pad])
ret_val=db_fput(rec_handle,fieldnr/name,data)
db_rls(rec_handle)
db_close(db_handle)
num_recs=db_nrecs(db_handle)
num_recs=db_nfields(db_handle)
no_chars=db_fwidth(db_handle,field_nr/name)
field_name=db_fname(db_handle,field_nr)
db_rlsall()
rec_num=db_first(db_handle,fieldnr/name,search_term)
rec_num=db_next([exact_flag])
rec_num=db_prev([exact_flag])
key_value=db_key()
rec_num=db_recnum(rec_handle)
db_flock(db_handle,on_or_off)

-o-

Introduction
This CLIPPER Database Llibrary (CXDBF.DLL) allows for searching and manipulating DBaseIII
tables using CLIPPER indexes.       In many cases it is simpler and faster to have a flat DBF table
with CLIPPER indexes to carry out simple table lookup and index searching, rather than have a
separate SQL database server.      Not only does this often provide a quicker and faster method of
implementing an application,  but it reduces the costs and maintenance required to implement a full
SQL server solution.

Database files in DBF format are supported by many PC applications, including dBase, Clipper,
FoxPro and others. These files have the .DBF file extension.     All DBF database file consists of a
header followed by a number of fixed length records. 

The header contains a list of the field names and types, the record length and the number of records
stored in the DBF file.



p201

© Zentel Telecom Ltd, 2009

All fields are stored as characters strings and can be one of the following field types:

Type Name Description
C Character An ASCII character string 
N Numeric A numerical value with a fixed number of places.   The field is right justified

and is padded with blanks on the left and the there are n decimal places then
the last n characters are assumed to be following the decimal point.      For
example if there a 3 decimal places then 123456 represents 123.456

L Logical Contains a single character T or F for TRUE or FALSE.    A blank character
can also represent FALSE.

D Date An Eight character string YYYYMMDD

All fields are numbered from zero for the first field and all TE functions which require a field as an
argument will accept either field number or a field name.    

All records witrhin a DBF table are numbered from one as the first record.

When a database is opened by a call to db_open() then this function will return a handle to the
database table which is then used in subsequent calls to other db_xxx() functions.            Zero or
more associated indexes can then also be opened with calls to db_ixopen() for any indexes
associated woth the DBF file.

When a record is read from the table using db_get() or a new record is appended using db_append()
then a copy of the record is placed in memory and is referenced by a record handle.            All
changes made to the record using db_fput() and any field values retrieved by db_fget() are actually
done using the copy that is held in memory.       The underlying record on the disk will not be
updated with any changes until a call is made to db_rls().

Note however that if an index key field is changed using db_fput() then the underlying index key
value will be change immediately.     It is important to make use of record locks when accessing
and updating shared database tables to ensure that data integrity is maintained.

Another issue that should be considered when updating DBF records is to ensure that a hangup
signal does not cause a jump to the onsignal program before all of the data in a record and been
updated correctly.         Use of functions such as CCsigctl() (from the Aculab function library) or
sc_sigctl() (from the dialogic function libary) should be used to ensure that sections of code cannot
be interrupted by hangup signals.

Index files are files that contain a list of <index key values> and the corresponding <DBF record
number>.       For example if we had a DBF table with the following entries:

Record
Number

Index Field Value

1 London
2 Birmingham
3 Leeds
4 Manchester



p202

© Zentel Telecom Ltd, 2009

5 Newcastle

The corresponding index file would have the following index key list

Index Key Value Record
Number

Birmingham 2
Leeds 3
London 1
Manchester 4
Newcastle 5

Notice that the Index file holds the records in alphabetical order.        If a call is made to db_first()
with a search_term set to "Aberdeen" then the db_first() function will fail to find an exact match
and will return 0 and will position the index pointer to a position just before the first index entry.    
A call to db_next() will then cause the index pointer to move to the first index key entry
("Birmingham") and the db_next() call will return 2 for the corresponding record number.

If a call is to db_first() with the search_term set to "London" then and exact match will be found
and the function will return the record number 1 (and the index pointer will be set to the "London"
index entry.          However if we set the search_term to "Lond", then an exact match will not be
found and the db_first() function will return a record number of 0 and the index pointer will be set
to point between the "Leeds" and "London" key entries.    A subsequent call to db_next() would
then return recrod number 1 (for "London") or a call to db_prev() will return record number 3 (for
"Leeds").

Note that when a call to db_first() is made the search_term is always padded with spaces on the
right up to the full width of the index key field.

All database handles  and record handles (and their associated locks) are owned by the TE task that
first obtained those handles.    If an attempt is made by another task to release a record handle or
close a database handle that it does not own then an error will be generated.       Also if a task is
killed for any reason (e.g. a stop, restart, endmain, endsignal statement is encountered or
task_kill() or task_chain() causes the task to end) then all records owned by the task will be
released (as if a call to db_rls() had been made) and all database handles will be closed (as if a call
to db_close() had been made).

If an error is encountered by the library then an error message is written to the error log and a
negative error value is returned.     Below is a list of the possible error values that can be returned
by the functions:

-1 General Error (see error message for reason)
-5 No free database handles.   (see limits) 
-6 File system error (E.g. bad path or file name)
-9 Invalid database handle given
-10 Invalid record handle given
-11 Invalid record number given



p203

© Zentel Telecom Ltd, 2009

-13 No free record handles (see limits)
-14 Invalid field name or number given
-22 Index error
-24 Locking conflict

There are certain limits that have been hard-coded into the library with respect to the maximum
number of open database jhandles or record handles.     these limits are shown below:

Maximim database handles 2048
Maximum open indexes 4096
Maximum record handles 4096

-o-

Clipper Database Function Reference

db_open
Synopsis:

db_handle=db_open(filename,type,mode)
Arguments:

filename - The full path to the DBF file
type - Future Use (set to 0)
mode - Open mode (0=excl,1=shared)

Description:  This function opens the DBF file file specifed by filename.       The type argument is
for furture use and should be set to 0.       The mode argument specifies whether the DBF file
should be opened in shared or exclusive mode.

If the DBF file is successfully opened then the function returns a file handle to the DBF file
otherwise a negative error code is returned.

Returns:   Returns the database handle or a negative error code.

-o-

db_ixopen
Synopsis:

retval=db_ixopen(db_handle,field_nr/name,ntxfilename)

Arguments:
db_handle - database handle returned from db_open()
field_nr/name - The field number or name of the field 
ntxfilename - Full path to the NTX filename

Description:  This function opens an NTX clipper index file associated with the DBF file specified
by the db_handle.     The field_nr/name specifies either the field number (numbered from 0) or the



p204

© Zentel Telecom Ltd, 2009

actual name of the field in the DBF for which the index file references.

Typically each DBF file will have one or more index files each associated with one of the fields in
the DBF file.   Currently only Clipper NTX index files are supported.

Returns:   Returns 0 upon success or a negative error code.

-o-

db_get
Synopsis:

rec_handle=db_get(db_handle,recno[,lock])

Arguments:
db_handle - A DBF file handle (as returned from db_open())
recno - The record number to read from the DBF file
[lock] - Optional locking (0=No lock, 1=Lock record)

Description:  This function reads the record number defined by the recno argument from the DBF
file specified by the database handle db_handle.     If the optional lock argument is specified as a
non-zero value then the record will be read with a record lock in place (so that another attempt to
read the same record with a lock will fail).

Upon sucessfully reading the given record a record handle (rec_handle) is returned to an internal
copy of the record.       This rec_handle can then be used in calls to db_fget() to retrieve the values
of individual fields in the record.

The record lock will be held until a call to db_rls() or db_close() or db_rlsall() or db_closeall() is
made.        Note that all record handles and database handles owned by a particular task will be
released if the task is killed by a specific task_kill() or task_chain() command or a stop or restart
statement.

Returns:   Returns the record handle or a negative error code.

-o-

db_append
Synopsis:

rec_handle=db_append(db_handle)

Arguments:
db_handle - Database handle returned from db_open()

Description:   This function appends a blank record to the given DBF file specified by db_handle.
    Note that the append byte for the DBF file will be locked and a blank entry will be added to any
indexes associated with the DBF file and that have been opened using the db_ixopen() function.

After appending the record then a handle to the internal representation of the record will be
returned.      If there is already another task that has call db_append() on this DBF file but has not
yet released the record with db_rls() then the function will fail with a locking error.



p205

© Zentel Telecom Ltd, 2009

To release the record and write any changes made to the internal record representation made with
db_fput() then and to remove the lock on the append byte then the db_rls() (or db_rlsall()) function
should be called.   

The record will also be released (and the lock removed) if the DBF file is explicitly closed through
a call to db_close() or db_closeall() or if the task is killed through a call to task_kill() or
task_chain() or if a stop or restart statement is encountered.

Returns:  Returns the record handle or a negative error code.

-o-

db_fget
Synopsis:
 value=db_fget(rec_handle,fieldnr/name[,pad])

Arguments:
rec_handle - The record handle
fieldnr/name - The field number or field name
[pad] - Flag to specify whether returned value should be padded with spaces to the full field

width

Description:    This function returns a field value from a record that has been copied to an internal
record buffer by db_get() or db_append().      Either the field number (counted from 0) or the field
name can be specified.     If a non-zero value for pad is given then the returned value will be
padded with spaces up to the full width of the field even if the contents of the field are less than
this width.

Returns:   Returns the value of the field or a negative error code.

-o-

db_fput
Synopsis:

ret_val=db_fput(rec_handle,fieldnr/name,data)

Arguments:
rec_handle - The record handle returned from db_get() or db_append()
fieldnr/name - The field number or field name
data - the value to write to the field

Description:  This function writes the specified data to the internal copy of the record represented
by rec_handle.    Note that only the internal copy of the record is changed and that the actual DBF



p206

© Zentel Telecom Ltd, 2009

file is not updated until a db_rls() call is made.   However if the field being written is an index field
with an associated open NTX file (opened by db_ixopen()),  then this index will be locked, updated
and unlocked.          Therefore it is possible that for index fields this call can fail due to a locking
conflict and the return value should be checked for this possiblility by the programmer (and the
db_fput() call should be retried if this happens or a graceful recovery should be made).

Returns:   Returns 0 upon success or a negative error code.

-o-

db_rls
Synopsis:

db_rls(rec_handle)

Arguments:
rec_handle - The record handle returned from db_get() or db_append()

Description:   This function releases a record handle obtained by a call to db_get() or db_append()
and writes any changes that have been made to the internal copy of the record back to the DBF file
and releases and record (or append byte) locks.

Note that a record is automatically released if the task that obtained the record is killed (E.g. by an
explicit call to task_kill() or task_chain()) or by encountering a restart, stop or endmain statement.

Returns:  Returns 0 on success or a negative error code.

-o-

db_close
Synopsis:

db_close(db_handle)

Arguments:
db_handle - the database handle

Description:  This function closes a database handle prevously opened by a call to db_open().      It
will also close any indexes associated with the DBF file and that have been opened with a call to
db_ixopen().      Also all currently aquired record handles (retrieved through db_get() or
db_append() calls) will be released and any locks removed from the DBF file.

Returns:  Returns 0 upon success or a negative error code.

-o-

db_nrecs
Synopsis:

num_recs=db_nrecs(db_handle)



p207

© Zentel Telecom Ltd, 2009

Arguments:
db_handle - The database handle

Description:     This function returns the number of records that are in the DBF table specified by
the db_handle argument.

Returns:  Returns the number of records in the table or a negative error code

-o-

db_nfields
Synopsis:

num_recs=db_nfields(db_handle)

Arguments:
db_handle - The database handle

Description:     This function returns the number of fields in the records of the DBF table specified
by the db_handle argument.

Returns:  Returns the number of fields  in the records belonging to the specified table else returns
a negative error code if an invalid db_handle is given,

-o-

db_fwidth
Synopsis:

no_chars=db_fwidth(db_handle,field_nr/name)

Arguments:
db_handle - The database handle
fieldnr/name - The field number or field name

Description:   This function returns the field width for the given field_nr or field_name,  which is
the number of characters required to hold the contents of the field.

Returns:   Returns the field width or a negative error code.

-o-

db_fname
Synopsis:

field_name=db_fname(db_handle,field_nr)



p208

© Zentel Telecom Ltd, 2009

Arguments: 
db_handle - The database handle
field_nr - the field number

Description:   This function returns the name of the field specified by the given field_nr.    The
field_nr defines the number of the field starting from 0.

Returns:  Returns the field name or a negative error code.

-o-

db_rlsall
Synopsis:

db_rlsall()

Arguments:
NONE

Description:  This function releases all record handles that have previously been obtained by the
calling task (by calls to db_get() or db_append()) and then closes all database handles that have
previously been opened by the task.   

Note that when a record handle in released then all record locks are removed and any changes made
to the records will be written to disk.

Note that db_rlsall() will automatically be called when a task is killed either through encountering
a stop or restart or endmain or endonsignalstatement or through an explict call to task_kill() or
task_chain().

Returns:   Returns 0

-o-

db_first
Synopsis:

rec_num=db_first(db_handle,fieldnr/name,search_term)

Arguments:
db_handle - The database handle
fieldnr/name - the field number or field name of the index field 
search_term - The value to search for

Description:    This function carries out an index search on the index associated with the given
fieldnr/name (which must have previously been opened with the db_ixopen() call).         

The db_first() function works in conjuction with the db_next() and db_prev() function calls to
maintain an index pointer for a specific database handle that allows the calling task to search and
step though an index in index key order.



p209

© Zentel Telecom Ltd, 2009

If an exact match for search_term is found in the index then the index pointer will be positioned at
that key and the record number of the corresponding record in the database table will be returned.   
     

If an exact match for the search_term is not found then the index pointer will be positioned in
between keys in the index and the function will return record number 0 (to indicate that no exact
match was found).        Calls to db_next() or db_prev() can then be used to step through the index
keys in forward or reverse order from that point.

If a search is made for a index key value that is beyond then last key in the index then the index
pointer will be positioned after the last key in the index.    A call to db_next() will then return 0 to
indicate that the index pointer is beyond the end of the index,  whereas db_prev() will then return
the last record in the index.

Similarly if a search is made for a key that is before the first entry in the index then the index
pointer will be positioned prior to the first key in the index.    A call to db_prev() will then return 0,
whereas a call to db_next() will return the first key in the index.

Note that calls to db_first(), db_next() and db_prev()  cannot be nested within a single task,   since
only one index pointer is maintainted per task.     

Returns:   If an exact match is found then the record number of that match is returned.    If no
exact match is found then the function will return 0 and the index pointer will be postitioned just
before the next key that would match.           If an invalide db_handle  or non index fieldnr/name is
specified then the function will return a negative error code.

-o-

db_next
Synopsis:

rec_num=db_next([exact_flag])

Arguments:
[exact_flag] - Optional argument whcih can be set to non-zero value if an exact match is

required

Description:    This function will move the index pointer to the next key in the index and return the
record number of the corresponding record in the database table.          A call to db_first() must
have previously been made to start the search and set the initial position of the index pointer.       If
the call to db_next() causes the index pointer to go beyond the last key of the index then the
function will return 0.

If the optional exact_flag argumment is set to a non-zero value then the function will only return a
record number for a record that matches exactly the search_term speacified in the db_first() call.     
As soon as a key is encountered that does not match the search_term specified in the db_first() call
then the function will return 0.

Returns:   Returns the record number of the next key pointed to by the index pointer (set up
previously be a call to db_first()) or returns 0 if the index pointer has moved beyond the end of the
index .



p210

© Zentel Telecom Ltd, 2009

if exact_match is set and the next key value does not match the search_term specified by db_first()
the function will return also 0.

If a previous call to db_first() has not been made then the function will return a negative error code.

-o-

db_prev
Synopsis:

rec_num=db_prev([exact_flag])

Arguments:
[exact_flag] - Optional argument whcih can be set to non-zero value if an exact match is

required

Description:    This function will move the index pointer to the previous key in the index and
return the record number of the corresponding record in the database table.          A call to db_first()
must have previously been made to start the search and set the initial position of the index pointer.  
   If the call to db_next() causes the index pointer to move to before the first key of the index then
the function will return 0.

If the optional exact_flag argumment is set to a non-zero value then the function will only return a
record number for a record that matches exactly the search_term speacified in the db_first() call.     
As soon as a key is encountered that does not match the search_term specified in the db_first() call
then the function will return 0.

Returns:   Returns the record number of the previous key pointed to by the index pointer (set up
previously be a call to db_first()) or returns 0 if the index pointer has moved prior to the start of the
index .

if exact_match is set and the next key value does not match the search_term specified by db_first()
the function will return also 0.

If a previous call to db_first() has not been made then the function will return a negative error code.

-o-

db_key
Synopsis:

key_value=db_key()

Arguments:
NONE

Description:    This function returns key at current position in a search. A call to db_first() must



p211

© Zentel Telecom Ltd, 2009

have previously been made to set the index pointer. This is useful for finding the current key when
db_next() or db_prev() is used with a 0 (false) value for exact_flag. An empty string "" is returned
if an error occurs, or if the current search is not positioned on a key value.

Returns:   Returns the key value of the index key currently pointed to by the index pointer (set up
through a call to db_first() (then possibly db_next() or db_prev()).    If the index pointer does not
point to a key entry in ythe index (either because db_first() hasn't been called or because the index
pointer points between records), then the function will return an empty string.

-o-

db_recnum
Synopsis:

rec_num=db_recnum(rec_handle)

Arguments:
rec_handle - the record handle returned by db_get() or db_append()

Description:   This function returns the record number (starting from 1) of the record specified by
the given rec_handle.

Returns:    Returns the record number of the speicifed record or a negative error code.

-o-

db_flock
Synopsis:

db_flock(db_handle,on_or_off)

Arguments:
db_handle - The database handle
on_or_off - set to non-zero to set the file lock, or 0 to release the file lock

Description:  This function allows for an entire database table to be locked by setting the
on_or_off argument to a non zero value.     Once a lock has been set then any other task that
attempts to call the db_flock() function will fail to obtain the lock until the lock is released.

Returns:    Returns 0 or a negative error code.   It will return -24 if another task has already
obtained the lock.

-o-

Floating Point Library



p212

© Zentel Telecom Ltd, 2009

Introduction
The Telecom Engine Language does not have built in support for floating point variable types.   
Instead the floating point operations are provided by the floating point library (CXFP.DLL).

-o-

Floating Point Library Quick Reference
fp_decs(places)
answer = fp_add(number1, number2[, decimals])
answer = fp_sub(number1, number2[, decimals])
answer = fp_mul(number1, number2[, decimals])
answer = fp_div(number1, number2[, decimals])
answer = fp_div(number1, number2[, decimals])
answer = fp_pow(number,power[, decimals])
answer = fp_rnd(number, type, digit[, decimals])

-o-

Floating Point Library Reference

fp_decs
Synopsis:

fp_decs(places)

Arguments:
places - The default number of decimal places for the library

Description:  This function sets the default number of decimal places that will be returned by the
library function calls.    Note that this is a global setting and will effect all calls to the library.    By
default all functions will return results to two decimal places unless changed by this function (or if
specified explicitly in the function call).       The number of decimals can be set to any value
between 0 and 9 inclusive.

Returns:   Returns 0

-o-

fp_add
Synopsis:

answer = fp_add(number1, number2[, decimals])

Arguments:

number1 - The first floating point number



p213

© Zentel Telecom Ltd, 2009

number2 - The second floating point number
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:   This function adds the two floating pount numbers specified by number1 and
number2 and returns the result.    If the optional decimals argument is specified then the result will
be returned with this number of decimal places,  otherwise the global default number of decimal
places will be used (as specified by fp_decs()).

Returns:   Returns the result of adding number1 to number2

-o-

fp_sub
Synopsis:

answer = fp_sub(number1, number2[, decimals])

Arguments:

number1 - The first floating point number
number2 - The second floating point number
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:   This function subtracts number2 from number1 and returns the result.    If the
optional decimals argument is specified then the result will be returned with this number of
decimal places,  otherwise the global default number of decimal places will be used (as specified by
fp_decs()).

Returns:   Returns the result of subtracting  number2 from number1

-o-

fp_mul
Synopsis:

answer = fp_mul(number1, number2[, decimals])

Arguments:

number1 - The first floating point number
number2 - The second floating point number
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:   This function multiplies the two floating pount numbers specified by number1 and
number2 and returns the result.    If the optional decimals argument is specified then the result will
be returned with this number of decimal places,  otherwise the global default number of decimal
places will be used (as specified by fp_decs()).

Returns:   Returns the result of multiplying number1 and number2

-o-



p214

© Zentel Telecom Ltd, 2009

fp_div
Synopsis:

answer = fp_div(number1, number2[, decimals])

Arguments:

number1 - The first floating point number
number2 - The second floating point number
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:   This function divides number1 by number2 and returns the result.    If the optional
decimals argument is specified then the result will be returned with this number of decimal places,
otherwise the global default number of decimal places will be used (as specified by fp_decs()).

If a divide by zero error is encountered then the function will return the string "ERROR" and an
error message will be written to the error log.

Returns:   Returns the result of dividing number1 by number2 or the string "ERROR" if a divide
by zero error is encountered.

-o-

fp_pow
Synopsis:

answer = fp_pow(number,power[, decimals])

Arguments:
number - The number to raise to a power
power - The power by which to raise the number
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:  Returns the number raised to the power specified by power (sometimes written x^y
or x**y).

In the event of an error, e.g. fp_pow(-1, "0.5"), the function will return the string "ERROR" and an
error message will be written to the error log file.

This function has an optional additional argument specifying the number of decimal places used for
rounding (decimals).  The initial default number of decimal places used for rounding is 2, this
default value may be changed by calling fp_decs(n) where n is 0 to 9 specifying the number of
decimal places. The current default is over-ridden by specifying an explicit number of decimals.

Returns:   Returns the result of raising number by the power specified by power or else the string
"ERROR" if invalid values are specified (E.g. trying to take the square root of a negative number)

-o-

fp_rnd



p215

© Zentel Telecom Ltd, 2009

Synopsis: 
answer = fp_rnd(number, type, digit[, decimals])

Arguments:
number - The number to round
type - How to round (0=Truncate, 1=Round up, 2=Round nearest)
Digit - The digit position to round (+ for before decimal place, - for after decimal place)
[decimals] - Optional argument to specify the number of decimal places of the returned result

Description:    This function allows for a floating point number to be rounded to a certain number
of places.    The number can be rounded up, down or truncated depending on the value specified in
the type argument.         Type can be specified as one of the following:

0 truncate (or round down)
1 round up
2 round up or down based on whether the least significant digit is less than or greater than 5.

The digit argument specifies the digit position to round to.    If a positive value is given for digit
then this specifies a digit position to the left of the decimal place.   For example using the type
truncate :

  fp_rnd("1234.567",0,3)   returns  "1000.000"
  fp_rnd("1234.567",0,2)   returns  "1200.000"
  fp_rnd("1234.567",0,1)   returns  "1230.000"

If a negative value is given for digit then this specifies a digit position to the right of the decimal
place:

  fp_rnd("1234.567",0,-3)   returns  "1234.567"
  fp_rnd("1234.567",0,-2)   returns  "1234.560"
  fp_rnd("1234.567",0,-1)   returns  "1234.500"

This function has an optional additional argument specifying the number of decimal places used for
rounding. The initial default number of decimal places used for rounding is 2, this default value
may be changed by calling fp_decs(n) where n is 0 to 9 specifying the number of decimal places.
The current default is over-ridden by specifying an explicit number of decimals.

Returns:  Returns the number rounded as specified.

-o-

Sockets Library

Introduction
The Sockets Library (CXSOCK.DLL) provides the functionality to make TCP/IP socket
connections and send and receive data over those sockets.  It also provides connectionless data
exchange through Datagram functionality.    



p216

© Zentel Telecom Ltd, 2009

-o-

socket=Sconnect(addr,port[,timeout_10ths])  
Sclose(socket)
Srecv (socket, no_bytes [,timeout_10ths[ ,&pData_buf]]);
socket=Slisten(port)
socket=Saccept(lsock,[timeout_10ths,&pAddr,&pPort])
Ssend (socket, data, no_bytes, [, data1[,data2...]])
flag=Scheck(socket,rd_wr_err)
hostname=Shostname()
socket=SopenDGRAM(port)
SsendDGRAM(sock,addr,port,data,no_bytes,[data1[,data2...]) 
SrecvDGRAM (socket, no_bytes, pAddr, pPort ,timeout_10ths ,&pData_buf)
Strace(on_off)

-o-

Sockets Function Reference

Sconnect
Synopsis:  

socket=Sconnect(addr,port[,timeout_10ths])   

Arguments:
address - The IP address to connect to
port - The IP port to connect to 
[timeout_10ths] - Optional timeout (in 10th seconds) to wait for the connection to complete

Description:  This function will attempt to make a TCP connection to the IP address and port
specified as arguments.    The IP address can be specified either in dot notation (192.168.2.1) or as
a named address.    The function looks at the first character of the address and if this character is
numeric then it will assume that the address is in dot notation, otherwise it will assume it is a
named address.

If the optional argument timeout_10ths is specified then the function will block and will not return
until the timeout expires or the connection completes and will return a handle to the connecting 
socket (or a negative error value).     

If the timeout_10ths argument is not specified then the function will always return immediately
with the connecting socket handle (or a negative error value).

Note that the connecting socket handle will not be fully useable for sending or receiving data until
the socket connection has completed.    If an attempt is made to send or receive on a socket that has
not yet fully connected then the function will return -3 (EWOULDBLOCK).



p217

© Zentel Telecom Ltd, 2009

The programmer can use Scheck() to check if the socket is writable or in error as a way of checking
if the connection has completed or has failed to connect.

Example:

// Attempt to make a socket connection

socket=Sconnect("google.com",80);

// Loop waiting for connection or error

while(1)

// Check if socket is ready for write (connection complete)

x=Scheck(socket,1);

if(x eq 1)

break;

endif

// Check for error

x=Scheck(socket,2);

if(x eq 1)

errlog("Error could not connect to google.com");

stop;

endif

// prevent tight loop to allow windows to receive messages..

sleep(1);

endwhile

// If we get here we are connected...

etc

Returns:    The function will return the connecting socket handle (which is used in subsequent
calls to socket functions) or else a negative error value.

-o-

Sclose
Synopsis:  

Sclose(socket)

Arguments:
socket - The socket handle

Description:   This function closes a sosket handle previously created by a call to Sconnect(),
Slisten() or Saccept().

Returns:    0 if successful or a negative error value.

-o-

Srecv



p218

© Zentel Telecom Ltd, 2009

Synopsis:  
Srecv (socket, no_bytes [,timeout_10ths[ ,&pData_buf]]);         

Arguments:
socket - The socket handle
no_bytes - The number of bytes to read from the socket
[timeout_10ths] - Optional timeout in 10ths seconds
[pData_buf] - Optional pointer to a variable to hold the returned data..

Description:   This function is used to receive data on the given socket.     The no_bytes argument
specifies the maximum number of bytes to read from the socket.   If there is less than no_bytes
received waiting to be received on the socket then the function will return these bytes. 

If the optional timeout_10ths argument is specified then the function will block until the speicifed
number of bytes has been read or the timeout has expired (in which case the function will return
-3).       A timeout value of 0 will cause the function to return immediately (which is the default
value for this optional argument).    A negative timeout value will cause the function to

The data received on the socket is usually returned by the function,  however this can sometime
cause confusion if the data received is a string like "-3", which would be confused with the return
value "-3" (EWOULDBLOCK).       Therefore it is better to pass a pointer to a variable that will
receive the data using the pData_buf argument.      If this argument is given then all data received
on the socket will be placed in the variable pointed to by this argument and the function itself will
return 0 when some data has been received or a negative error value.

Below is an example where one character at a time is received from the socket and added to a
string until a newline character is received.

// Keep reading from socket until we receive a newline character

while(1)

var char:1;

var msg:255;

int x;

x=Srecv(socket,1,0,&char);

// -3 indicates no character is waiting

if(x eq -3)

sleep(1);

continue;

// Any other negative value is an error

else if(x < 0)

errlog("Error reading socket: err=",x);

stop;

endif endif

// if we get here then we have received a character

// append it to message variable (unless it is newline)

if(char streq "̀ n")

// newline indicates end of message so break loop

break;

endif



p219

© Zentel Telecom Ltd, 2009

// append character to message string

msg=msg&char;

endwhile

Returns:    If pData_buf is given then the function will return 0 if successful or a negative error
value (and the received data is place in the variable pointed to by pData_buf).          If pData_buf is
not given then the function will return the received data on the socket or a negative error code.   In
particular -3 (EWOULDBLOCK) is returned if there is less than the number of bytes specified by 
no_bytes waiting on the socket.
.

-o-

Slisten
Synopsis:  

socket=Slisten(port)

Arguments:
port - The port to listen on

Description:   This function returns a listening socket on the specified port.    Only one socket can
be listening on a particular port at any one time and if a second call to Slisten() is made on the same
port then it will return an error.          The socket returned by this function can be used in the
Saccept() function to wait for inbound socket connections on the port.

For example:

// Get a listening socket on port 5000

Lsocket=Slisten(5000);

// Loop waiting for inbound connections on this port 

while(1)

Asocket=Saccept(Lsocket);

// The above function will return -3 is there are no waiting inbound connections

if(Asocket eq -3)

sleep(1);

continue;   //  keep polling

// Also check for error

else if(Asocket < 0)

errlog("Error in Saccept():  err=", Asocket);

stop;

// else we must have an inbound connection request...

else

break;

endif endif

endwhile



p220

© Zentel Telecom Ltd, 2009

Returns:    A socket for the inbound connection or a negative error code (in particular -3 indicates
that there is no inbound connection waiting yet).

-o-

Saccept
Synopsis:  

socket=Saccept(lsock,[timeout_10ths,&pAddr,&pPort])

Arguments:
lsock - The listening socket to accept connections on
[timeout_10ths] - Optional timeout (in1/10 secs) to block waiting for connection
[pAddr] - Optional pointer to a variable that will hold the IP address of connecting client
[pPort] - Optional pointer to a variable that will hold the IP port of connecting client

Description:    This function attempts to accept an incoming connection on a listening socket
created by Slisten().      If there is are no inbound connections waiting then the function returns -3
(EWOULDBLOCK) which allows the function to be used to poll for incoming connections.          

If the optional timeout_10ths argument is specified then the function will block until either a
connection request is received or the timeout period expires (after which it will return -3).      

The variables pointed to by the optional pAddr and pPort argument will hold the IP address and
port of the connecting client if a connection is made.

The socket handle returned from this function (>=0) should then be used in subsequent calls to
Srecv(), Ssend(), Scheck() etc.

An alternative way of polling for connections on a listening socket is to use Scheck() to check for
read capabillity on the listening socket.    As soon as the listening socket becomes readable then
this indicates that the is an inbound connection request and a call to Saccept() is sure to succeed.

Returns:  Returns the handle to an inbound socket connection (>= 0), or -3 (EWOULDBLOCK) if
there were no inbound connections waiting,  or any  other negative value indicates and error.

-o-

Ssend
Synopsis:
     Ssend (socket, data, no_bytes, [, data1[,data2...]])    
Arguments:

socket - The socket handle
data - The data string to send
no_bytes - The number of bytes to send 
[data1[,data2..]] - Optional additional data to send if data to send exceeds maximum

Telecom Engine string length

Description:    This function allows the specified number of bytes (no_bytes) of data to be sent
over the specified socket handle.        The data to send is passed in the data variable.      However if



p221

© Zentel Telecom Ltd, 2009

more data needs to be sent than can be fit into a single Telecom Engine string variable then
addtional data can be sent by specifying the optional [data1[,data2...] arguments.      These
additional data arguments will be simple appended to the first data argument and sent out in a
single send command.      Note however that the same effect can be achieved by issuing multiple
Ssend() commands.

If the socket is not currently ready to send data (for example if the send buffer is full) then the
function will return -3 (EWOULDBLOCK).     A call to Scheck() can be made prior to the Ssend()
call to check whether the socket is ready for writing.

Returns:   Returns 0 upon success or a negative error code.

-o-

Scheck
Synopsis:

flag=Scheck(socket,rd_wr_err)

Arguments:
socket - Socet handle
rd_wr_err - Specifies whether to check for read, write or error (0,1 or 2) on the socket

Description:  This function allows a socket handle to be checked to see if it is ready to be read
from, written to or has an error condition.      The d_wr_err argument should be set to one of the
values:  0, 1 or 2 to check for read, write or error repsectively.        The Scheck() function will
return 1 if the specified condition has been found, otherwise the function will return 0.

This function is usually used to poll a socket to check that the socket has reached a certain state
before continuing to carry out an operation on the socket.     

For example,  after a call to Sconnect() the socket can be polled by checking for write capability
which will indicate that the socket has successfully connected to the far end, or otherwise the
socket can be checked for error:

socket=Sconnect("google.com",80);

  // Loop waiting for socket connection or error 

while(1)

const CHK_WRITE=1;

const CHK_ERROR=2;

if(Scheck(socket,CHK_WRITE))

applog("Socket connected..");

break;

else if(Scheck(socket,CHK_ERROR)

errlog("Error connecting to google.com");

stop;

endif endif

// Prevent tight loop to allow windows messages to be processed



p222

© Zentel Telecom Ltd, 2009

sleep(1);

endwhile

Also after a listening socket has been created by Slisten() the socket can be polled for read
capability which will indicate that an inbound connection request has been received.

Returns:   Returns 1 if the specified condition (read, write or error) has been met on the given
socket,  otherwise returns 0.     A negative error code is returned if an invalid socket is given.

-o-

Shostname
Synopsis:

hostname=Shostname()

Arguments:
NONE

Description:   This function returns the name of the local host machine.

Returns:  Returns the name of the machine upon which the program is running on.

-o-

SopenDGRAM
Synopsis:

socket=SopenDGRAM(port)

Arguments:
port - The specified port on which to receive datagrams

Description:  This function opens a connectionless datagram socket on the specified port.    After
making this call the socket handle returned will be able to send and receive inbound datagram
messages on that port.

Returns:   Returns the socket handle or a negative error code.

-o-

SsendDGRAM
Synopsis:

SsendDGRAM(sock,addr,port,data,no_bytes,[data1[,data2...]) 



p223

© Zentel Telecom Ltd, 2009

Arguments:   
socket - The socket handle
addr - The IP address to send data to 
port - The IP port to send data to
data - The data string to send
no_bytes - The number of bytes to send 
[data1[,data2..]] - Optional additional data to send if data to send exceeds maximum

Telecom Engine string length

Description:  This function allows for a connectionless datagram message to be sent to the
specified addr and port.   The data to send is passed in the data variable and the number of bytes to
send is specified by the argument no_bytes.      However if more data needs to be sent than can be
fit into a single Telecom Engine string variable then addtional data can be sent by specifying the
optional [data1[,data2...] arguments.      These additional data arguments will be simple appended
to the first data argument and sent out in a single send command.      Note however that the same
effect can be achieved by issuing multiple SsendDGRAM() commands.

Note that datagrams do not guarantee that the data will be delivered to the far end so should only be
used over a reliable network for non-essential message (or else an underlying protocol (for example
using acknowledgements and timeouts) should be implemented).

Returns:   Returns 0 on success or negative error code.   Not that a 0 return value only indicates
that the data was sent succesfully,  it does not gaurantee that the data will get to the other end.

-o-

SrecvDGRAM
Synopsis:

SrecvDGRAM (socket, no_bytes, pAddr, pPort ,timeout_10ths ,&pData_buf)

Arguments:
socket - The socket handle
no_bytes - The maximum number of bytes of data to receive
pAddr - The IP address of the sending party
pPort - The IP port of the sending party
timeout_10ths -  The timeout (in 1/10th seconds) to wait for a message to arrive 
[&pData_buf] - Optional pointer to a variable that will hold the received datagram

Description:   This function allows datagram messages to be received up to the number of bytes
specified by the no_bytes argumnent.    If there is less than no_bytes of data waiuting then the
function will retrieve this data     The socket handle specifies a datagram socket handle opened
using SopenDGRAM().       If a timeout is specified in the timeout_10ths argument then the
function will block until some data has been received or the timeout expires (After which it would
return EWOULDBLOCk(-3)).        If a zeero timeout is specified then the function will return
immediately with EWOULDBLOCK if there is no data available.   If a negative timeout is
specified then the function will wait indefinitely for data to arrivet the socket.

If the optional argument pData_buf is specified then all received data will be returned in the



p224

© Zentel Telecom Ltd, 2009

variable pointed to by this argument (and the function will return 0 to indicate that data has been
received.      If the pData_buf argument is not specified the function will return the data received as
the return value.     

Returns:    If pData_buf is specified then the function will return 0 if data was received or -3
(EWOULDBLOCK) if there was no data waiting, or a negative error value.

If pData_buf is not specified then the function will return the actual data received or or -3
(EWOULDBLOCK) if there was no data waiting, or a negative error value.

-o-

Strace
Synopsis:

Strace(on_off)

Arguments:
on_off - Set to 0 to switch trace off or 1 to switch trace on

Description:   This function is for diagnostic and debugging purposes and causes diagnostiv trace
messages to be written to the Telecom Engine trace log

Returns:   Always returns 0

-o-

Aculab E1/T1 Card Library

Introduction
There are two Telecom Engine libraries that provide access to the functionality of the Aculab API. 
   CXACULAB.DLL provides the call control and switching capabilities and the CXACUDSP.DLL
provides the functionality for the Prosody speech and digital signal processing capabilities.

This section describes the call control and switching library (CXACULAB.DLL).

-o-

The ACUCFG.CFG Configuration file
When the Telecom Engine loads the CXACULAB.DLL (and CXACUDSP.DLL) libraries upon
start-up, it first looks for the presence of a configuration file called ACUCFG.CFG.

This file tells the CXACULAB.DLL (and CXACUDSP.DLL) which Aculab cards to open and
which ports/modules to open on those cards.       



p225

© Zentel Telecom Ltd, 2009

The location of the ACUCFG.CFG file can be defined by the environment variable called
ACUCFGDIR (set it to a directory path: e.g. SET
ACUCFGDIR=C:\TelecomEngine\Node08\config").       If the ACUCFGDIR environment variable
is not set then the library will look in the current directory for the ACUCFG.CFG file.

If the ACUCFG.CFG file is not found then the boards are opened in the order that they are found in
the  Aculab  Configuration  Tool  (ACT),  and  which  is  the  order  returned  by  the
acu_get_system_snapshot()  function,  and  all  ports  or  modules  found  on  those  boards  will  be
opened in sequential order.

It should be noted that  most  of  the call  control  functions in the CXACULAB.DLL library take a
port number and a channel number as the first two arguments..   E.g.   CCenablein(port,channel).   
        The port number specified here is a logical  port number where the first  logical port in the
system is  port  0  and  then  increases  sequentially  through  ports  1,  2,  3  ..  etc  for  every  other  port
opened in the system (defined by the order that they are opened).

For example if there were two Prosody X cards in a system, each with 8 E1 ports and two IP ports,
 then if all of these ports were opened the logical port numbers would range from 0 throught to 9
for the first  card (including the VOIP ports  8 and 9),  then logical  ports  10 through to  19 for  the
second card.

Note:  For  Speech cards,  the  speech channels  opened upon  startup  are  numbered  sequentially
from  1  up  to  the  number  of  speech  channels  in  the  system  (E.g.  if  there  were  two  Prosody
Speech  modules  of  150  channels  each  then  the  logical  channel  numbers  (as  used  by  the
SMxxxx(vox_chan,...) functions) would range from 1 through to 300).

The entries in the ACUCFG.CFG must always start with a board=<serial number> statement,
then be followed by one or more of the following statements (comments are preceded by a #
character):

The ports statement:

ports=<port no. 1[:no.chans]>[,<port no. 2[:no.chans]>[,port no. 3...]]

This specifies which of the physical ports on the card to open (and in which order).     For example:

# Open four E1 ports of first aculab card

board=192821

ports=0,1,2,3

# Open four E1 ports of second aculab card

board=192822

ports=0,1,2,3

The above would result in eight logical port numbers being created at startup (0..7) for the eight
ports opened across the two Aculab cards specified.        It is also possible to specify the number of
channels to open on each port,  but if this is omitted then the port will be opened with the default
number of channels (31 for E1 ports, 30 for IP ports),  although for E1 channels the valid_vector
field in the port info parameter will also be used to define which channels are bearer channels and
which channels are signalling channels.    

For E1 ports its usually best not to specify the number of channels directly unless you specifically
want to allocate less channels that the full number.     For example the following will open two



p226

© Zentel Telecom Ltd, 2009

ports on the card, but will only allocate the first 15 channels on these ports:

# Open four E1 ports of first aculab card

board=192821

ports=0:15,1:15

For IP ports on Prosody X cards the default number of channels to allocate is 30 if it is not
explicitly specified.    In the following ACUCFG.CFG a single Prosody X card has 8 E1 ports and
2 IP ports.       Only the first IP port is opened here and 150 IP channels are allocated to it:

board=192799

ports=0,1,2,3,4,5,6,7,8:150

It is possible to skip one or more physical ports or rearrange the order that they are opened if
required:

# Open four E1 ports of first aculab card

board=192821

ports=0,1,3

# Open four E1 ports of second aculab card

board=192822

ports=0,2,3,1

In the above example only seven logical ports are created (0..6) and on the second board the order
that the physical ports are to be opened has been changed (physical ports 0,2,3,1 on the second card
would map to logical ports 3,4,5,6 in this example).

The modules statement:

modules=<module no. 1[:no. channels]>[,<module no. 2[:no channels]>[,...]]

This specifies which DSP modules to open on the card (and in which order),  plus the number of
channels on the module to allocate can optionally be specified (otherwise all the channels on the
module will be allocated (150 for Prosody X modules, 60 for older Prosody modules).

For example the following will open a single board with 4 E1 ports and 150 channels of speech
(numbered from 1 to 150):

# Open four E1 ports and DSP module 0 (which has 150 channels)

board=192823

ports=0,1,2,3

modules=0:150

On a Prosody X board the default number of channels to open on a module is 150 so this doesn't
necessariry need to beed specified.    Below is the equivalent ACUCFG.CFG file to the above:

# Open four E1 ports and DSP module 0 (which has 150 channels)

board=192823

ports=0,1,2,3

modules=0

If there are multiple modules on a board then these can be specified in the order that they are to be
opened:

# Open four E1 ports and DSP module 0 (which has 150 channels)



p227

© Zentel Telecom Ltd, 2009

board=192823

ports=0,1,2,3

modules=0:150,1:150

board=192824

ports=0,1,2,3

modules=0:60

The above will open  modules 0 and 1 on the first board (allocating 300 channels number 1 to 300),
then will open module 0 on the second card, allocating 60 channels (which will be numbered 301
to 360).

The ipports statement:

ipports=<port 1 no. IP channels[:port 1 type]>[port 2 no. IP channels[:port 2 type]>[,...]]]

For Prosody S it is necessary to open system-wide IP port(s) to handle VOIP calls and the above
statement provides the means to specify these ports.            The ipports statement must follow the
definition for a Prosody S type board (with serial number HS_PROSODYS) as follows:

# open Prosody S board

board=HS_PROSODYS

modules=0:150

ipports=30:S,30:S

If you specify an ipports statement for a non-prosody S board then it will be ignored.    The port
type parameter specifies the number of IP channels to allocate on the IP port and may be followed
by an optional port type specifier where S is for a SIP port and H is for a H.323 port.    By default
the IP port is opened as a SIP port.

So in the above example the Prosody S card is opened and two system-wide IP ports are opened
(one for SIP, one for H323) with 30 IP channels each.         Note that with Prosody S boards there is
a single module (which is actually an on-host media DSP) and the number of channels that can be
allocated will depend upon the processing power of the host CPU.

When they are opened, the IP ports will be given a logical port number which is then used in the
call control functions just like for normal E1 ports.        In the above example two logical ports are
opened (0 and 1) for the two IP ports specified.

In the example below the IP ports will be allocated logical port numbers 4 and 5 since there are
also 4 E1 ports specified on the first Aculab card which will be allocated ports 0,1,2 and 3:

# open 4 E1 ports on first card

board=192821

ports=0,1,2,3

# open Prosody S board

board=HS_PROSODYS

modules=0:150

ipports=30:S,30:S

Below are some examples of ACUCFG.CFG files for typical purposes:



p228

© Zentel Telecom Ltd, 2009

The following could be used for the Prosody S evaluation license which provides 4 channels of
media and IP processing for up to 45 days:

# Prosody S board

board=HS_PROSODYS

modules=0:4

ipports=4:S

The following could be used for on-host Prosody S with licence for 150 media and IP ports

# Prosody S board

board=HS_PROSODYS

modules=0:150

ipports=150:S

The following opens a single prosody X card with 8 E1 ports plus the H323 port with 150 IP
channels

# Prosody X board

board=192876

modules=0:150

ports=0,1,2,3,4,5,6,7,9

The following opens a single E1 card with two E1 ports, plus an old style Prosody speech card with
a single DSP module:

# E1 card

board=178912

ports=0,1

#Prosody DSP card

board=165444

modules=0:60

-o-

Run-time Initialisation and configuration
Upon start-up  the  CXACULAB.DLL library opens  and  initialises  the  Aculab  call  control  boards
ready  to  make  and  receive  calls.        The  order  that  the  boards  are  opened  is  specified  by  the
ACUCFG.CFG configuration file,  or  if  this  doesn't  exist  then the boards  are  opened in  the  order
returned by the  acu_get_system_snapshot()  function.       See  ACUCFG.CFG configuration for  a
full description of this file.

The format of ACUCFG.CFG file is a text file that contains a set of statements that provides the
list of Aculab board serial numbers to open, plus information about which ports or modules to open
on each board.

The  order  that  the  call  control  boards  are  opened  is  important  since  it  defines  the  logical  port
number that is used in many of the calls to the CXACULAB.DLL functions.      Port numbers relate
to the E1 or T1 port on the boards and is numbered from zero to one less than the number of E1/T1
ports opened across all the boards in the system.

For example if the system contains two boards each with 4 E1s then there will be a total of 8 E1



p229

© Zentel Telecom Ltd, 2009

ports  (numbered  0  to  3  and  4  to  7).        The  order  that  the  serial  numbers  appear  in  the
ACUCFG.CFG file defines which of these boards has the ports numbered 0 through 3 and which
will have the ports numbered 4 through 7. 

Most  of  the  call  control  functions  take  the  port  number  and  the  channel  number  as  the  first  two
parameters  to  the  function  call  (for  example.    CCtrace(port,channel,tracelevel)  ,
CCabort(port,channel) etc)..

The channel represents the  channel  on  the  port  ranging from 1  to  31 (depending on the  protocol
being used and the number of signalling channels etc).

Once  the  boards  are  opened  then  the  board  capabilities  are  examined  and  any  boards  that  have
switching capabilities will have their transmit channels ‘nailed’ to the external H.100 or SCBUS.   
    This provides a consistent method for switching between channels and in the current version of
the  library  even  channels  on  the  same  board  will  be  switched  through  the  external  H.100  or
SCBUS.             

H.100 timeslots are defined by both a stream number and a timeslot number where each stream can
have up to 128 timeslots.       For the SCBUS there is only one stream and the timeslots range from
0 up to 4096.                 To create a consistent way of referencing these timeslots  whether the
external bus is a H.100 bus or an SCBUS the CXACULAB.DLL generates a logical handle which
is calculated from the stream and the timeslot as follows:

handle = stream * 4096 + timeslot

For  the  SCbus  the  stream  is  always  24  which  is  the  internal  fixed  stream  that  is  used  by  the
ACULAB firmware when SCBUS is present.

This handle is used/returned by the switching functions listed below.

handle=CCgetslot(port,channel);
x= CClisten(port,channel,handle);
x= CCunlisten(port,channel);

By default the first channel on the first logical port will be ‘nailed’ to stream 0, timeslot 0 of the
H100 bus  (or  just  timeslot  0  of  the  SCBUS).         If  there  is  other  non-Aculab hardware in  the
system that  is  using  these  stream/timeslot  ranges,  or  there  is  some  other  reason  why  a  different
stream/timeslot range should be used for nailing the transmit channels to the external bus then the
environment variable ACUCC_TSOFFS can be set to define the start stream and timeslot offset to
nail to.

This variable should be specified in the same form as defined above for the stream/timeslot handle.
   For example if you want to start nailing the call control channel starting at stream 64, timeslot 0
then you would set the environment variable as follows:

REM set offset to:   64 * 4096 + 0
SET ACUCC_TSOFFS=262144

N.B.  The current version of the library does yet transparently support multi-chassis switching for
Prosody-X  functionality  (although  the  programmer  has  access  to  the  RTP  functions  and  can
therefore  implement  their  own  multi-chassis  switching  capability).        The  next  version  of  the



p230

© Zentel Telecom Ltd, 2009

library will include a transparent method for multi-chassis switching consistent with above function
calls and methodology.

-o-

Some Simple Examples
Probably the best way to show the basic library functions and the library calling conventions is to
provide a simple example.       The example below simply waits for an incoming call on the first
channel of the first E1 port,  plays a message and then hangs up.            It is assumed that the reader
is  familiar  with  the  Telecom  Engine  standard  library  set  and  the  Aculab  Speech  module  library
(CXACUDSP.DLL).

$include "aculab.inc"

 

int port, chan, vox_chan, x, event;

var filename:64;

 

main

    port=0

    chan=1;

    vox_chan=1;

    filename="hello.vox";

 

    // Make full duplex H.100 bus routing between voice channel and network port/channel

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan, CCgetslot(port, chan));

 

    // Enable inbound calls on this port/channel

    CCenablein(port,chan);

    

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

          if(x > 0 and event eq CS_INCOMING_CALL_DETECTED)

               break;

          endif

    endwhile

 

    // Answer the call

    CCaccept(port,chan);

 

    // Play a vox file to caller

    SMplay(vox_chan,filename);

   

    // Hangup the call 

    CCdisconnect(port,chan,CAUSE_NORMAL);

 

   // Wait for state to return to IDLE the release call

   while(1)

       x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

       if(x eq CS_IDLE)

             break;

       endif

    endwhile

 

    // release the call

    CCrelease(port,chan);

    

    // restart the application to wait for another call..   

    restart;

 

endmain

The  program  should  be  fairly  self  explanatory  but  I  will  describe  the  key  parts  of  the  program
below. 



p231

© Zentel Telecom Ltd, 2009

The “aculab.inc” file is provided with the library and defines all the constants that are used with the
library  such  as  CC_WAIT_FOREVER,  CAUSE_NORMAL,
CS_INCOMING_CALL_DETECTED etc.        These are  be  described in  more detail  in  the  call
control library function library reference (CXACULAB).   

The first call:  CClisten() simply makes the receiving stream/channel of the call control channel ‘
Listen’ to the transmit stream/channel of the Voice channel, so that anything that is output by the
voice channel will be heard by the caller.        

The  second  call:    SMlisten()  makes  the  receiving  stream/channel  voice  channel  ‘listen’  to  the
transmit  stream/channel  of  the  Call  control  channel,  so  that  any  DTMF  digits  or  other  audio
transmitted by the caller will be heard by the voice channel.    

As mentioned above all this is done by switching from and to the extern H.100 or SCBUS.

The CCenablein(port,channel)  allows inbound calls  to  be  received on the  channel,   and then the
application goes into a loop waiting for calls. 

The CCwait(port,channel,timeout_100ms,&event) function call will wait for the specified timeout
(in 10ths of a second) for an event.    If the timeout is defined as -1 (CC_WAIT_FOREVER) then
the call will not return until an event is found or it is aborted by a CCabort() call.       Really the
only  event  that  should  be  received  here  is  CS_INCOMING_CALL_DETECTED  but  we  do  a
specific check for it anyway in case the channel was in a unknown state when the program started
(probably some error handling should be carried out if we found an unexpected event).

Once  a  CS_INCOMING_CALL_DETECTED event  has  been  received  then  the  call  is  answered
immediately with CCaccept(port,channel)  and the voice prompt is  played to the caller using the
SMplay(vox_chan,filename) function from the CXACUDSP.DLL library.          

The call  is  then disconnected using the CCdisconnect(port,channel) call  and the application goes
into a loop waiting for  the  channel  to  return to  the  CS_IDLE state  before releasing the  call  with
CCrelease(port,channel) and restarting the program to wait for the next call.

There  are  obviously  a  number  of  improvements  that  can  be  made  to  this  application  to  make  it
more useful.      Currently it only waits for and accepts a call on one channel, whereas in a real life
situation there would be 30 or more channels on an E1.         

Usually, one would have a ‘master’ program which would ‘spawn’ a task to take control of a single
channel on a port.      In the application below there are 4 E1 ports and so we ‘spawn’ a channel
control task for each channel on each E1, something like this:

int port, channel;

const MAX_PORTS=4

const MAX_CHANNELS=32;

main

     for(port=1;port <= MAX_PORTS)

          for(channel=1;channel <= MAX_CHANNELS;channel++)

            // Skip the signalling channel

            if(channel <> 16)

                // spawn the task called chantask.tex 

                // and pass the port and channel as arguments

                task_spawn("chantask",port,channel);

            endif

        endfor

    endfor



p232

© Zentel Telecom Ltd, 2009

endmain

The chantask.tex application would then be similar to the first example but instead of the port and
chan  variables  being  hard-coded,  we  would  instead  take  these  from the  arguments  passed  to  the
task through the task_spawn() function call:
$include "aculab.inc"

 

int port, chan, vox_chan, x, event;

var filename:64;

 

main

    port=arg(1);

    chan=arg(2);

    // Use voice channels sequentially 1..x

    vox_chan=1+(port*32+chan);

    filename="hello.vox";

 

    // Make full duplex H.100 bus routing between 

    // voice channel and network port/channel

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan, CCgetslot(port, chan));

 

    // Enable inbound calls on this port/channel

    CCenablein(port,chan);

    

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

          if(x > 0 and event eq CS_INCOMING_CALL_DETECTED)

               break;

          endif

    endwhile

 

  ... etc

endmain

Also it is likely that rather than playing a fixed prompt, as in the program above, a more usual way
of handling incoming calls is to inspect the DID or ANI and make a decision based on these about
how to handle the call (usually a table lookup).        Typically this would result in the chantask.tex
program ‘chaining’  on  to  another  application  which  then  takes  control  of  playing  messages  and
receiving DTMF etc.    When the caller hangs up or the application disconnects the call then the
application would then ‘chain’ back to the chantask.tex program  to wait for another call.      The
CCgetparm(port,channel,ParmID) function is used to extract  call  specific parameters such as the
DID and ANI.

$include "aculab.inc"

 

int port, chan, vox_chan, x, event;

var filename:64, did:64,ani:64, service_name:64;

main

    port=arg(1);

    chan=arg(2);

    // Use voice channels sequentially based on the port/channel

    vox_chan=1+(port*32+chan);

    filename="hello.vox";

 

    // Make full duplex H.100 bus routing between 

    // voice channel and network port/channel

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan, CCgetslot(port, chan));

 

    // Enable inbound calls on this port/channel

    CCenablein(port,chan);

    

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);



p233

© Zentel Telecom Ltd, 2009

          if(x > 0 and event eq CS_INCOMING_CALL_DETECTED) break; endif

    endwhile

    // Get the CLID and DID

    did=CCgetparm(port,chan,CP_DESTINATION_ADDR);

    ani=CCgetparm(port,chan,CP_ORIGINATING_ADDR);

    // Use the DID to decide which application to chain

    // This usually will be a database lookup based on the DID 

    service_name=DID_LOOKUP(did);

    //  A blank service_name indicates unknown DID number

    if(service_name strneq "")

         // Answer the call

         CCaccept(port,chan);

     

         // Chain on to the IVR service task

         task_chain(service_name,port,channel);

         // If we get here then the chain call failed (ie. Invalid TEX file)

    endif

 

    // Hangup the call 

    CCdisconnect(port,chan,CAUSE_NORMAL);

 

    // Wait for state to return to IDLE the release call

    while(1)

       x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

       if(x eq CS_IDLE) break; endif

    endwhile

 

    // release the call

    CCrelease(port,chan);

    

    // restart the application to wait for another call..   

    restart;

 

endmain

-o-

Simple VOIP -> TDM example
To make or receive a VOIP call a Virtual Media Processing channel needs to be created on a DSP
module connected to the board which has the VOIP capability (Using SMcreateVMP()).        The
supported codecs can then be specified for that VMP channel using the SMsetcodec() function.

The usual call control functions can then be used to receive an inbound VOIP call,  but before
accepting the call the call accept parameters must be setup with the VMP channel so that the media
stream (codec) can be processed.    This is done using the CCsetparm() functions.

In the example below, once the VOIP call has been received we then make an outbound call over
the E1 port and when this answers we create a TDM endpoint so that the E1 stream can be
connected to the VMP port  in a full duplex connection so that the two parties can talk to each
other.          This is done through the CCcreateTDM() functions and the SMfeedlisten() function.

Here is a small program showing this functionality:

$include "aculab.inc"

int vox_chan, port, chan, vmp_chan, module_id;

int call_state;

main



p234

© Zentel Telecom Ltd, 2009

    vox_chan=1;

    module_id=0;

    e1port=0;

    e1chan=1;

    ipport=8;

    ipchan=1;

    vmp_chan=SMcreateVMP(module_id);        // Create a VMP channel

    // specify a codec on the vmp channel

    SMsetcodec(vmp_chan,0,G711_ALAW);

    // Keep a track of where we are so that we know how to clear down the call in onsignal

    call_state=0;

    

    // Wait for an inbound call on IP channel(using the newly created VMP when we accept)

    CCenablein(ipport,ipchan);

    CCuse(ipport,ipchan);    // Hangup will cause jump to onsignal

    while(1)

           x=CCwait(ipport,ipchan,WAIT_FOREVER,&state);

           if(state eq CS_INCOMING_CALL_DET)

                call_state=1;    // need to clear down ip call

                CCalerting(ipport,ipchan);   // send INCOMING_RINGING event

           else if(state eq CS_WAIT_FOR_ACCEPT)

                // specify a codec on the vmp channel

                SMsetcodec(vmp_chan,0,G711_ALAW);

      

                // Set the VMP and CODEC array into the call accept parameters..

                CCclrparms(ipport,ipchan,PARM_TYPE_ACCEPT);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

                CCaccept(ipport,ipchan);

                break;

           endif endif

     endwhile

    task_sigctl("(");    // Temporarily prevent hangup from causing jump to onsignal

    // Create the TDM endpoint for the E1 port

    tdm_chan=CCcreateTDM(e1port,e1chan);    // Get a TDM endpoint for an E1 channel

   

    // ** Now connect the feeds from the VMP and TDM endpoint to make

    // ** a full duplex connection to connect the conversations from the IP to E1 calls   

    // ** we do this here so that VOIP call will hear call progress tones..

    // The vmp_chan will now listen to the tdm_chan datafeed 

    SMfeedlisten(vmp_chan,TYPE_VMP,tdm_chan,TYPE_TDM);

    // The tdm_chan will now listen to the vpm_chan datafeed 

    SMfeedlisten(tdm_chan,TYPE_TDM,vpm_chan,TYPE_VPM);

   

    call_state=2;    // need to clear down ip call and destroy TDM

    task_sigctl(")");    // Allow hangup to cause jump to onsignal again..

    // hangup on E1 port will cause jump to onsignal

    CCuse(e1port,e1chan);

    call_state=3;    // need to clear down both IP and E1 calls

    // Now make outbound call on E1 port/channel

    x=CCmkcall(e1port,e1chan,"123456"."987654");

    while(1)

           x=CCwait(e1port,e1chan,WAIT_FOREVER,&state);

           if(state eq CS_OUTGOING_RINGING)

                applog("Outgoing ringing")   // send INCOMING_RINGING event



p235

© Zentel Telecom Ltd, 2009

           else if(state eq CS_CALL_CONNECTED)

                break;

           endif endif

    endwhile

       // We just loop here waiting for a hangup from either side which will cause jump to onsignal

      while(1)

           sleep(40);   // four second sleep

      endwhile

endmain

onsignal

    applog("We are in ONSIGNAL!!!!");

    // Release the VMP channel

    SMdestroyVMP(vmp_chan,VMP_TYPE);

    // do we need to clear down the inbound IP call?

    if(call_state)

        CCdisconnect(ipport,ipchan,LC_NORMAL);

        if(call_state >=2)

              SMdestroyTDM(tdm_chan);

        endif

      

        last_state=-1;

        while(1)

   # wait for idle

   applog("CCIN: in onsig CCwaiting for CS_IDLE");

   x=CCwait(ipport,ipchan,10,&state,last_state);

   applog("CCIN: CCwait returned x=",x," state=",state);

             if(state eq 0)

            applog("ipport=",ipport," ipchan=",ipchan," Incoming went to IDLE");

            CCrelease(ipport,ipchan);

           break;

   endif

   task_sleep(1);

       endwhile

    endif

   // do we need to clear down the outbound E1 call?

   if(call_state >=3)

        CCdisconnect(e1port,e1chan,LC_NORMAL);

        last_state=-1;

        while(1)

   # wait for idle

   applog("CCIN: in onsig CCwaiting for CS_IDLE");

   x=CCwait(e1port,e1chan,10,&state,last_state);

   applog("CCIN: CCwait returned x=",x," state=",state);

             if(state eq 0)

            applog("e1port=",e1port," ipchan=",e1chan," Incoming went to IDLE");

            CCrelease(e1port,e1chan);

           break;

   endif

   task_sleep(1);

       endwhile

    endif

    

    restart;

endonsignal

-o-



p236

© Zentel Telecom Ltd, 2009

Aculab Call Control Quick Reference
num_ports=CCnports();
CCsigtype(port);
CCsiginfo(port,&pBearerMap,&pProtocol);
CCtrunktype(port);
CCwatchdog(port,alarm,timer_ms);
CCalarm(port,alarm);
CCtrace(port, channel, tracelevel);
handle=CCgetslot(port,channel);
CClisten(port,channel,ts_handle);
CCunlisten(port,channel)
state=CCstate(port,chan);
CCuse(port,timeselot[,flag]);
CCwait(port,chan,timeout_100ms,&pState);
CCabort(port,channel);
CCenablein(port,channel[,cnf_parm1[,cnf_parm2...]);
CCaccept(port, channel);
CCmkcall(port,channel,DID,CID[,send_comp[,cnf_parm1[,cnf_parm2....]);
CCdisconnect(port, channel,cause[,std_or_raw]);
CCrelease(port, channel);
CCsetparm(port, channel, parmType, parmId, Value);
CCclrparms(port,channel,ParmType);
CCgetparm(port, channel, parmId, &pVar);
CCalerting(port, channel);
CCgetcause(port, channel[,std_or_raw]);
CCoverlap(port, channel,dest_addr,sending_complete);
CCsetupack(port, channel[,progress,Display]);
CCproceed(port, channel[,unique_hex]);
CCprogress(port, channel[,progress[,Display]]);
CCgetaddr(port, channel);
CCanscode(port, channel,code);
CCputcharge(port, channel,charge[,meter]);
CCgetcharge(port, timeslot,&pType,&pCharge,&pMeter);
CCnotify(port, channel,notify_indicator);
CCkeypad(port, channel,keypadinfo[,display]);
CChold(port, channel);
CCreconnect(port, channel);
CCenquiry(port, channel,DID,CID,sending_complete[,cnf_parm1,cnf_parm2]....);
CCsetparty(port, channel,party);
CCtransfer(Aport, Achannel,Cport,Cchannel);
CCgetxparm(port, channel, parmId, &pVar[,connectionless_flag]);
CCsetxparm(port, channel, parmId, Value[,connectionless_flag]);
CCclrxparms(port,channel[,connectionless=1]);
CCgetcnctless(port);
SMcreatevmp(vox_chan,[local_addr])(port, channel, DID, CID,
sending_complete[,parm1,parm2....]);
CCsendfeat(port, channel);
CCsndcnctless(port);
hexstr=CCstrtohex(string);
hexstr=CCinttohex(unsigned_val,num_bytes);



p237

© Zentel Telecom Ltd, 2009

hexstr=CCunstohex(int_val,num_bytes);

-o-

Aculab Call Control Function Reference

CCnports
Synopsis:  

num_ports=CCnports()

Description:     This function returned the number of logical E1/T1 ports that have been opened
(either  by  reading  the  ACUCFG.CFG  file  or  by  opening  all  the  boards  returned  from  the
acu_get_system_snapshot() function.    

Returns: This function returns the number of logical ports in the system.

-o-

CCsigtype
Synopsis:  

CCsigtype(port)

Arguments:
port – The logical E1/T1 port number.

Description:   This function maps to the following Aculab function:

ACU_ERR call_type(ACU_PORT_ID portnum);

It will return the signalling type on the specidied port and will be one of the following as defined in
the ACULAB.INC file:

const  S_UNKNOWN   =   0;

#- user end definitions-----------------

const  S_1TR6      =   1;

const  S_DASS      =   2;

const  S_DPNSS     =   3;

const  S_CAS       =   4;

const  S_AUSTEL    =   5;

const  S_ETS300    =   6;

const  S_VN3       =   7;

const  S_ATT       =   8;

const  S_CAS_TONE  =   9;

const  S_TNA_NZ    =  10;

const  S_FETEX_150 =  11;

const  S_SWETS300  =  12;

const  S_IDAP      =  13;

const  S_T1CAS     =  14;

const  S_T1CAS_TONE=  15;

const  S_NI2       =  16;

const  S_DPNSS_EN  =  17;

const  S_ATT_T1    =  18;



p238

© Zentel Telecom Ltd, 2009

const  S_QSIG      =  19;

# - user end definitions ---------------

const  S_1TR6NET   =  20;

const  S_VN3NET    =  21;

const  S_ETSNET    =  22;

const  S_AUSTNET   =  23;

const  S_ATTNET    =  24;

const  S_DASSNET   =  25;

const  S_TNANET    =  26;

const  S_FETEXNET  =  27;

const  S_SWETSNET  =  28;

const  S_IDAPNET   =  29;

const  S_NI2NET    =  30;

const  S_ATTNET_T1 =  31;

const  S_DPNSS_T1  =  32;

const  S_FETEX_150_T1=33;

const  S_FETEXNET_T1 =34;

const  S_INS_T1      =35;

const  S_INSNET_T1   =36;

const  S_INS         =37;

const  S_INSNET      =38;

const  S_ISUP        =39;

const  S_GLOBAND     =40;

const  S_GLOBNET     =41;

const  S_MON         =42;

const  S_MON_T1      =43;

const  S_QSIG_T1     =44;

const  S_DPNSS_EN_T1 =45;

const  S_ETS300_T1   =46;

const  S_ETSNET_T1   =47;

const  S_H323        =48;

const  S_SIP         =49;

const  S_BR_ETS300   =50;

const  S_BR_NI1      =51;

const  S_BR_ATT      =52;

const  S_BR_INS      =53;

const  S_DMS100  =60;

const  S_DMS1NET     =61;

const  S_BR_ETSNET   =70;

const  S_BR_NI1NET   =71;

const  S_BR_ATTNET   =72;

const  S_BR_INSNET   =73;

const  S_SS5_TONE    =90;

const  S_BASE        =99;

Returns:    Returns  the  signalling  type  or  the  negative  error  code  returned  from  the  Aculab
call_type() function.

-o-

CCsiginfo
Synopsis:  

CCsiginfo(port,&pBearerMap,&pProtocol);

Arguments:
port – The logical E1/T1 port number.
pBearerMap – Pointer to a variable that will hold the returned bearer channel mask as a 32

character string of 1s and 0s
pProtocol – Pointer to a variable that will hold the returned protocol name



p239

© Zentel Telecom Ltd, 2009

Description:   This function returns information about the signalling and bearer channels on the
specified port as well as the name of the protocol running on the port.         

The pBearerMap is a pointer to a variable that will hold the returned channel/timeslot bit mask
which will be returned as a string of 0s and 1s where 1s represent the bearer channels and 0
represent the signalling/timing channels of the port.       The rightmost character of the returned
string represents bit 0 of the 32 bit vector.   

For example, for a port running the Q931 protocol where timeslot 0 is used for clocking and
timeslot 16 is used for signalling the returned value for pBearerMap would be as follows:

11111111111111101111111111111110

The values returned into the variable pointed to by pProtocol will be one of the following:

• E1 - ISDN signaling systems
ETS300 ETSNET FETX150 FETXNET
DASS2 DASSNE DPNSS QSIG
• E1 - CAS signaling systems
R2B2P CAS BTCU BTCN PTVU PTVN PD1D
PD1U PD1N R2L P8 EM BEZEQ
• E1 - CAS tone signaling systems - requires DSP
R2T R2T1 ALSU ALSN BELGU BELGN EFRAT
EEMA PD1 PD1DD PD1UD PD1ND BTMC OTE2
FMFS SMFS I701 SS5
• T1 - ISDN signaling systems
NI2 NI2NET INS_T1 INT1NET ATT1 ATT1NET ETST1U ETST1N
DMS1 DMS1NET
• T1 - CAS tone signaling systems - requires DSP
F12 T1RB
• SS7
ISUP
• Passive Monitor
E1 - MONE
T1 — MONT
• IP Telephony
H323 SIP

Returns: This function returns 0 upon success or a negative error code.

-o-

CCtrunktype
Synopsis:  

CCtrunktype(port) 

Arguments:
port – The logical E1/T1 port number.

Description:   This function maps to the following Aculab function:



p240

© Zentel Telecom Ltd, 2009

ACU_ERR call_line (ACU_PORT_ID portnum);

It  returns  the  type  of  trunk  supported  by  the  port  and  will  be  one  of  the  following  defined  in
ACULAB.INC:

const  L_E1          = 1;

const  L_T1_CAS      = 2;

const  L_T1_ISDN     = 3;

const  L_BASIC_RATE  = 4;    

const  L_PSN         = 5;    # packet stream

Returns:  Returns the trunk type or a negative error code.

-o-

CCwatchdog
Synopsis:  

CCwatchdog(port,alarm,timer_ms)

Arguments:
port – The logical E1/T1 port number.
alarm – The ID of the alarm to present. 
timer_ms – The timeout in ms before the layer 1 alarm is presented 

Description:   This function maps to the following Aculab function:

ACU_ERR call_watchdog(WATCHDOG_XPARMS *watchp);

Once  CCwatchdog()  has  been  called  with  a  timer  (in  milliseconds)  and  alarm code  set,  then  the
application  must  continue  to  call  CCwatchdog()  repeatedly  thereafter  to  keep  refreshing  the
watchdog timer.     If CCwatchdog() is not called before the timer expires then the firmware will
present the specified layer 1 alarm to the network.

To disable the watchdog timer simply set the timeout to 0.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCalarm
Synopsis:  

CCalarm(port,alarm)

Arguments:
port – The logical E1/T1 port number.
alarm – The ID of the alarm to present. 

Description:   This function maps to the following Aculab function:

ACU_ERR call_send_alarm(ALARM_XPARMS *alarmp);



p241

© Zentel Telecom Ltd, 2009

It causes a layer 1 alarms to be sent to the network on the specified port.     The alarm ID can be
one of the following defined in ACULAB.INC:

const ALARM_NONE  =0;

const ALARM_AIS   =8192;

const ALARM_RRA   =2048;

const ALARM_CML   =64;

Returns: Returns upon success or a negative error code.

-o-

CCtrace
Synopsis:  

CCtrace(port, channel, tracelevel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
tracelevel – 0 turns trace off, 1 turns trace on.

Description:   This function switches on or off the tracing of Call Control events.     Trace will be
written to the Telecom Engine trace log.

Returns:   0 upon success or -1 if a bad port or channel was provided.

-o-

CCgetslot
Synopsis:  

handle=CCgetslot(port,channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function returns a handle to the external H.100 or SCBUS transmit timeslot for
the port and channel.       The timeslot handle references the transmit timeslot of the given port and
 channel which has been ‘nailed’ to a H.100 or SCBUS timeslot by the library at start-up.           
This  only  applies  to  boards  that  have  switching  capabilities  and  not  to  the  PROSODY_S  type
virtual boards which do not have any external switching capability.

The returned handle is actually obtained from the physical H.100 or SCBUS stream and timeslot
from the following formula:

handle = stream * 4096 + timeslot

For  the  SCbus  the  stream  is  always  24  which  is  the  internal  fixed  stream  that  is  used  by  the
ACULAB firmware when SCBUS is present.



p242

© Zentel Telecom Ltd, 2009

For  example,  if  a  board  has  four  E1  ports  and  is  fitted  with  a   H.100  bus  then  upon  startup  the
CACULAB.DLL library will  automatically ‘nail’  the  transmit  timeslots  from the  E1  ports  to  the
H.100  bus  starting  at  stream  0,  timeslot  0  (or  as  defined  by  the  ACUCC_TSOFFS environment
variable) .        Since each H.100 stream can have 128 timeslots then all four E1 ports will be nailed
to the timeslots of stream 0 on the H.100 bus (with appropriate gaps wherever there are signalling
channels on the ports).

From the formula shown above, the handles returned by the CCgetslot() function would range from
0 though to 127 for the channels on these four ports.

If there was a second board present in the system with another four E1 ports then these channels
would  be  nailed  to  stream  1  of  the  H.100  bus  and  the  handles  returned  by  CCgetslot()  for  the
channels on these four ports would range from 4096 to 4223.

The external bus handle returned by CCgetslot() can be used in the CClisten() function to allow the
 ‘receive’ timeslot of one channel to ‘listen’ to the ‘transmit’ timeslot from another channel via the
external H.100 or SCBUS.

For example, if there was an inbound call on E1 port 0, channel 1 and an outbound call on E1 port
1, channel 12 then these two conversations could be connected together with the following calls:

CClisten(0,1,CCgetslot(1,12));
CClisten(1,12,CCgetslot(0,1));

Returns:  This  function  returns  the  logical  timeslot  handle  for  the  given  port  and  channel  or  a
negative error code.

-o-

CClisten
Synopsis:  

CClisten(port,channel,ts_handle)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
ts_handle – The logical timeslot handle returned from CCgetslot()

Description:   This function causes the receive timeslot of the given port and channel to ‘listen’ to
the transmit timeslot that has been nailed to the external H.100 or SCBUS.        The ts_handle is a
logical  handle  that  references  an  external  H.100  or  SCBUS  stream/timeslot  as  returned  by
CCgetslot() or SMgetslot() or which can be obtained by using the formula:

handle = stream * 4096 + timeslot

Where stream and timeslot are the stream and timeslot on the external H.100 or SCBUS.      For the
SCBUS the stream is hardcoded to 24.

For example the following code makes channel 1 on port  0  listen  to  a  voice channel  so  that  any



p243

© Zentel Telecom Ltd, 2009

voice prompts played on the voice channel will be heard by the caller.

x=CClisten(0,1,SMgetslot(1));

(The SMgetslot()  function is  part  of  the  Aculab  speech module  library CXACUDSP.DLL and  is
similar to the CCgetslot() function).
 
Returns: This function returns 0 upon success or a negative error code.

-o-

CCunlisten
Synopsis:  

CCunlisten(port,channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function stops the receive timeslot of the given port and channel from listening
to any H.100 or SCBUS transmit timeslot:

Returns: This function returns 0 upon success or a negative error code.

-o-

CCstate
Synopsis:  

CCstate(port,chan)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function returns current state of the channel.   The state returned will be one of
the following (as defined in the ACULAB.INC file provided with the library):

const CS_IDLE               =0x0;

const CS_WAIT_FOR_INCOMING  =0x1;

const CS_INCOMING_CALL_DET  =0x2;

const CS_CALL_CONNECTED     =0x4;

const CS_WAIT_FOR_OUTGOING  =0x8;

const CS_OUTGOING_RINGING   =0x10;

const CS_INCOMING_DETAILS   =0x20;

const CS_CALL_CHARGE        =0x21;

const CS_EMERGENCY_CONNECT  =0x80;

const CS_TEST_CONNECT       =0x100;

const CS_REMOTE_DISCONNECT  =0x400;

const CS_WAIT_FOR_ACCEPT    =0x800;

const CS_PROGRESS           =0x1000;

const CS_OUTGOING_PROCEEDING=0x2000;

const CS_NOTIFY             =0x4000;

const CS_INFO               =0x8000;

const CS_HOLD               =0x10000;



p244

© Zentel Telecom Ltd, 2009

const CS_HOLD_REJECT        =0x20000;

const CS_TRANSFER_REJECT    =0x40000;

const CS_RECONNECT_REJECT   =0x80000;

const CS_CHARGE_INT         =0x100000;

const CS_EXTENDED           =0x200000;

const CS_DPNS_TRANSIT       =0x1000000;     # DPNSS Enhanced Only 

const CS_DPNS_IN_TRANSIT    =0x2000000;     # DPNSS Enhanced Only 

const CS_DPNS_HOLDING       =0x4000000;     # DPNSS Enhanced Only 

const CS_DPNS_HELD          =0x8000000;     # DPNSS Enhanced Only 

const CS_DPNS_CONFERENCE    =0x10000000;    # DPNSS Enhanced Only 

const CS_DPNS_INTRUDING     =0x20000000;    # DPNSS Enhanced Only 

const CS_DPNS_IN_TRANSIT    =0x40000000;   # DPNSS Enhanced Only 

const CS_MEDIA     =0x00000101;   # IP only 

const CS_MEDIA_PROPOSE      =0x00000102;   #IP only 

const CS_MEDIA_REJECT_PROPOSAL  =0x00000103; # IP only 

const CS_MEDIA_REQUEST_PROPOSAL =0x00000104; # IP only 

const CS_MEDIA_REJECT_REQUEST_PROPOSAL =0x00000105; # IP only 

const CS_INSUFFICIENT_MEDIA_RESOURCE_FOR_CALL =0x00000106;  # IP only

Returns:  Returns the current state of the channel or -1 if a bad port or channel is given.

-o-

CCuse
Synopsis:  

CCuse(port,timeselot[,flag])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[flag] – Set to 1 (default) to cause task to jump to onsignal if a

CS_REMOTE_DISCONNECT is received.   Set to 0 to stop task jumping to onsignal. 

Description:     This function allows the current Telecom Engine task to be associated with a port
and  channel  in  such  a  way  that  if  a  call  on  the  specified  port  and  channel  receives  a
CS_REMOTE_DISCONNECT event then the task will be forced to jump to its onsignal function. 
             The default value of flag if it is not specified is 1.    To clear the association between the
task and a port and channel so that it will no longer jump to the onsignal function upon receiving a
CS_REMOTE_DISCONNECT event then the flag should be set to 0.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCwait
Synopsis:  

CCwait(port,chan,timeout_100ms,&pState)
Arguments:

port – The logical E1/T1 port number.
channel – The channel number. 
pState – Pointer to a variable to receive the ID of the event that terminated the CCwait() call.

Description:   This function will wait for an event to be received on a particular port and channel it
will  return either when an event is  detected on the channel or  the timeout has expired (or if  it  is



p245

© Zentel Telecom Ltd, 2009

aborted by CCabort()).       The timeout is specified in 100ms units (tenths of a second) after which
the function will return if no event has been received.    If -1 (CC_WAIT_FOREVER) is specified
for the timeout then  the call will wait forever for an event.       

The function takes a pointer to a variable which will hold the ID of the event received.

Note that the function keeps an internal track of events on a channel and if the state of a channel
has changed since the last time it was called then it will return immediately with the current state of
the channel.        This is to prevent events from being missed in between calls to CCwait() but it
means  that  the  programmer  should  always  check  the  returned  state  in  a  loop  to  ensure  that  the
expected event is received.    For example:

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

          // Make sure the event we want is received..

          if(x > 0 and event eq CS_INCOMING_CALL_DETECTED)

               break;

          endif

    endwhile

 

    // Answer the call

    CCaccept(port,chan);

 

    // Play a vox file to caller

    SMplay(vox_chan,filename);

   

    // Hangup the call 

    CCdisconnect(port,chan,CAUSE_NORMAL);

 

    // Wait for state to return to IDLE the release call

    while(1)

// THIS WILL RETURN IMMEDIATEDELY THE FIRST TIME IT IS          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

       if(x eq CS_IDLE)

             break;

       endif

    endwhile

In  the  second loop  above  where  the  application  calls  CCwait()  to  check for  a  return  to  the  state
CS_IDLE, the CCwait() call will certainly return immediately the first time through the loop since
the  state  will  have  changed  since  it  was  last  called  to  check  for
CS_INCOMING_CALL_DETECTED.

Returns:  The function will return 0 if the timeout has expired without receiving an event (or if the
function was aborted by a CCabort() call).     It will return 1 if the function terminated because an
event  was  detected  (and  the  event  ID will  be  set  in  the  variable  pointed  to  by  pState).     It  will
return -1 is a bad port or channel was given. 

-o-

CCabort
Synopsis:  

CCabort(port,channel) 

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 



p246

© Zentel Telecom Ltd, 2009

Description:   This function  aborts a CCwait() call on a particular port and channel.     

Returns:  Return 0 on success or -1 if a bad port or channel is given.

-o-

CCenablein
Synopsis:  

CCenablein(port,channel[,cnf_parm1[,cnf_parm2...])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[cnf_parm1,cnf_parm2]..   – optional additional CNF parameters..   

Description:   This function maps to the following Aculab function:

ACU_ERR call_openin(IN_XPARMS *indetailsp);

It opens the specified port/channel to allow incoming calls to be received on that channel.     
  

The optional cnf_parms allow for the IN_XPARMS.cnf field to be set.      If one or more of these
optional cnf_parms are specified then they are each ORed in turn with IN_XPARMS.cnf field.       
If no cnf_parms are specifed then by default the IN_XPARMS.cnf field is set to CNF_REM_DISC
which  stops  the  channel  automatically  returning  to  the  idle  state  when  a  remote  end  disconnect
occurs (instead the CCrelease() call must be used to return the channel to CS_IDLE state).     

See the Aculab documentation for the call_openin() function for a more detailed description of
the cnf field values.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCaccept
Synopsis:  

CCaccept(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab functions:

ACU_ERR call_accept(int handle);
or ACU_ERR xcall_accept(ACCEPT_XPARMS *acceptp);



p247

© Zentel Telecom Ltd, 2009

It is used to accept (answer) an incoming call after a CS_INCOMING_CALL_DET event has been
indicated.     If any of the extended parameters have been set using the CCsetparm() function with
a ParmType  of PARM_TYPE_ACCEPT then the extended version of the function will be called.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCmkcall
Synopsis:

CCmkcall(port,channel,DID,CID[,send_comp[,cnf_parm1[,cnf_parm2....])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
DID – The destination address
CID – The originating address
[send_comp] – Optional Sending complete flag
[cnf_parm1,cnf_parm2..] – Optional cnf_parms

Description:   This function maps to the following Aculab function:

ACU_ERR call_openout(OUT_XPARMS *outdetailsp);

It attempts to make an outgoing call on the specified port and channel.   

The DID and CID arguments specify the destination and originating addresses respectively.     The
option  send_comp  argument  allows  the  OUT_XPARMS.sending_complete  flag  to  be  set  and
should be set to 0 for overlap sending (more digits to come) or 1 for en-bloc sending.   The default
is en-bloc sending if this aragument is not given.

The optional cnf_parms allow for the OUT_XPARMS.cnf field to be set.      If one or more of these
optional cnf_parms are specified then they are each ORed in turn with OUT_XPARMS.cnf field.   
    If  no  cnf_parms  are  specifed  then  by  default  the  IN_XPARMS.cnf  field  is  set  to
CNF_REM_DISC which stops the channel automatically returning to the idle state when a remote
end disconnect occurs (instead the CCrelease() call must be used to return the channel to CS_IDLE
state).     

See the Aculab documentation for the call_openout() function for a more detailed description of
the cnf field values.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCdisconnect
Synopsis:  

CCdisconnect(port, channel,cause[,std_or_raw])

Arguments:



p248

© Zentel Telecom Ltd, 2009

port – The logical E1/T1 port number.
channel – The channel number. 
cause – The cause code
[std_or_raw] – Optional flag to define whether to use the generic (standardised cause code

or protocol specific raw cause code)

Description:   This function maps to the following Aculab functions:

ACU_ERR call_disconnect(CAUSE_XPARMS *causep);

or ACU_ERR xcall_disconnect(DISCONNECT_XPARMS *causep);

It is used to disconnect an incoming or outgoing call on the specified logical port and channel.    
The cause parameter can either be one of the Aculab defined generic cause codes (which will be
translated to the appropriate protocol specific cause code where possible) or else a raw protocol
specific code can be used (by setting the optional std_or_raw flag to 1).        The standard cause
codes are defined in the ACULAB.INC file as follows:

const LC_NORMAL                = 0;

const LC_NUMBER_BUSY           = 1;

const LC_NO_ANSWER             = 2;

const LC_NUMBER_UNOBTAINABLE   = 3;

const LC_NUMBER_CHANGED        = 4;

const LC_OUT_OF_ORDER          = 5;

const LC_INCOMING_CALLS_BARRED = 6;

const LC_CALL_REJECTED         = 7;

const LC_CALL_FAILED           = 8;

const LC_CHANNEL_BUSY          = 9;

const LC_NO_CHANNELS           =10;

const LC_CONGESTION            =11;

If any of the extended parameters have been set using the CCsetparm() function with a ParmType
of PARM_TYPE_DISCONNECT then the extended version of the function will be called.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCrelease
Synopsis:

CCrelease(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab functions:

ACU_ERR call_release(CAUSE_XPARMS *causep);

or ACU_ERR xcall_release(DISCONNECT_XPARMS *causep);

This function is used to release the call handle associated with an inbound or outbound call in
response to the channel returning to the CS_IDLE state.     
If any of the extended parameters have been set using the CCsetparm() function with a ParmType
of PARM_TYPE_DISCONNECT then the extended version of the function will be called.

Returns: This function returns 0 upon success or a negative error code.



p249

© Zentel Telecom Ltd, 2009

-o-

CCsetparm
Synopsis:  

CCsetparm(port, channel, parmType, parmId, Value)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
parmType – The type of parameter being set
parmID   - The ID of the parameter being set
Value   - The value to set the parameter to..

Description:    This  function  is  a  very  important  function  in  the  CXACULAB.DLL library  as  it
allows individual fields to be set in the various Aculab call control structures.      

For  many  Aculab  call  control  functions  there  are  two  versions  of  the  function:   a  plain  vanilla
function call and an extended function call which allows additional parameters to be specified in an
Aculab extended structure.
  
Also for the call_openin() and call_openout() functions there are some unique extended parameters
that can be set depending upon the network protocol being used.

The  Aculab  functions  where  there  are  both  plain  and  extended  versions  of  the  function  call  are
shown below:

ACU_ERR call_incoming_ringing(int handle);
ACU_ERR xcall_incoming_ringing(INCOMING_RINGING_XPARMS *ringingp);

ACU_ERR call_accept(int handle);
ACU_ERR xcall_accept(ACCEPT_XPARMS *acceptp);

ACU_ERR call_disconnect(CAUSE_XPARMS *causep);
ACU_ERR xcall_disconnect(DISCONNECT_XPARMS *causep);

ACU_ERR call_release(CAUSE_XPARMS *causep);
ACU_ERR xcall_release(DISCONNECT_XPARMS *causep);

ACU_ERR call_getcause(CAUSE_XPARMS *causep);
ACU_ERR xcall_getcause(DISCONNECT_XPARMS *causep);

ACU_ERR call_get_originating_addr(int handle);
ACU_ERR xcall_get_originating_addr(GET_ORIGINATING_ADDR_XPARMS* originating_parms);

ACU_ERR call_hold(int handle);
ACU_ERR xcall_hold(HOLD_XPARMS *holdp);

ACU_ERR call_reconnect(int handle);
ACU_ERR xcall_reconnect(HOLD_XPARMS *holdp);

Each  channel  opened  by  the  library  has  its  own  individual  copy  of  the  structures
INCOMING_RINGING_XPARMS,  ACCEPT_XPARMS,  DISCONNECT_XPARMS,
GET_ORIGINATING_ADDR_XPARMS and HOLD_XPARMS,  as well as individual copies of



p250

© Zentel Telecom Ltd, 2009

the  OUT_XPARMS and  IN_XPARMS used  by  the  call_openin()  and  call_openout()  functions  (
CCenablein(), CCmkcall()).

The  CCsetparm()  function  allows  for  the  fields  of  these  structures  to  be  set  as  required.      The
parmType argument defines which of the extended structures the parameter being set is part of, and
can be one of the following values (defined in the ACULAB.INC file):

const  PARM_TYPE_OUT         =0;   # For CCmkcall()

const  PARM_TYPE_IN          =1;   # For CCenablein()

const  PARM_TYPE_ALERTING    =2;   # For CCalerting()

const  PARM_TYPE_ACCEPT      =3;   # For CCaccept()

const  PARM_TYPE_DISCON      =4;   # For CCdisconnect()/CCrelease()

const  PARM_TYPE_HOLD        =5;   # COMING SOON

const  PARM_TYPE_GETADDR     =6;   # COMING SOON

Then the parmID  argument specifies which field of  the specified structure is  to  be set.       Each
field in each structure has been given a unique identifier which maps directly to one of the fields of
the Aculab extended structures.

For  example  lets  say  for  an  incoming  IP  call  we  wanted  to  set  the
accept_xparms.unique_xparms.sig_iptel.destination_display_name when we accepted the call then
we would have something like:

x=CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_DEST_DISPLAY,”Joe Bloggs”);

x=CCaccept(port,chan);

Note that once the CCsetparm() function has been called to set one of the extended structure
fields  then it  will  be  the  extended version  of  the  function  (xcall_accept()  in  the  case  above)
rather than the standard version that will be called thereafter or until a call to CCclrparms()
is made.     

The ParmID  The parmID values and the field and structure they map to are shown below:

PARM_TYPE_ACCEPT:

parmID Structure and Field it maps to: Field type
CP_Q931_PROGRESS_INDICATOR accept_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXST

R

CP_Q931_PROGRESS_LASTMSG accept_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_LOLAYER accept_xparms.unique_xparms.sig_q931.lolayer.ie PT_HEXST
R

CP_Q931_LOLAYER_LASTMSG accept_xparms.unique_xparms.sig_q931.lolayer.last_msg PT_UCHAR

CP_Q931_DISPLAY accept_xparms.unique_xparms.sig_q931.display.ie PT_HEXST
R

CP_Q931_DISPLAY_LASTMSG accept_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_Q931_CONN_ADDR accept_xparms.unique_xparms.sig_q931.connected_addr PT_STRING

CP_Q931_CONN_NUMBERING_TYPE accept_xparms.unique_xparms.sig_q931.conn_numbering_type PT_UCHAR

CP_Q931_CONN_NUMBERING_PLAN accept_xparms.unique_xparms.sig_q931.conn_numbering_plan PT_UCHAR

CP_Q931_CONN_NUMBERING_PRESE
NTATION

accept_xparms.unique_xparms.sig_q931.conn_numbering_presentation PT_UCHAR

CP_Q931_CONN_NUMBERING_SCREE
NING

accept_xparms.unique_xparms.sig_q931.conn_numbering_screening PT_UCHAR

CP_ISUP_PROGRESS_INDICATOR accept_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXST
R

CP_ISUP_PROGRESS_LASTMSG accept_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_LOLAYER accept_xparms.unique_xparms.sig_isup.lolayer.ie PT_HEXST



p251

© Zentel Telecom Ltd, 2009

R

CP_ISUP_LOLAYER_LASTMSG accept_xparms.unique_xparms.sig_isup.lolayer.last_msg PT_UCHAR

CP_ISUP_CONN_ADDR accept_xparms.unique_xparms.sig_isup.connected_addr PT_STRING

CP_ISUP_CONN_NATUREOF_ADDR accept_xparms.unique_xparms.sig_isup.conn_natureof_addr PT_UCHAR

CP_ISUP_CONN_NUMBERING_PLAN accept_xparms.unique_xparms.sig_isup.conn_numbering_plan PT_UCHAR

CP_ISUP_CONN_NUMBERING_PRESE
NTATION

accept_xparms.unique_xparms.sig_isup.conn_numbering_presentation PT_UCHAR

CP_ISUP_CONN_NUMBERING_SCREE
NING

accept_xparms.unique_xparms.sig_isup.conn_numbering_screening PT_UCHAR

CP_ISUP_CHARGE_IND accept_xparms.unique_xparms.sig_isup.charge_ind PT_UCHAR

CP_ISUP_DEST_CATEGORY accept_xparms.unique_xparms.sig_isup.dest_category PT_UCHAR

CP_ISUP_ACC_IND_VALID accept_xparms.unique_xparms.sig_isup.isdn_access_ind.valid PT_UCHAR

CP_ISUP_ACC_IND_VALUE accept_xparms.unique_xparms.sig_isup.isdn_access_ind.value PT_UCHAR

CP_ISUP_USERP_IND_VALID accept_xparms.unique_xparms.sig_isup.isdn_userpart_ind.valid PT_UCHAR

CP_ISUP_USERP_IND_VALUE accept_xparms.unique_xparms.sig_isup.isdn_userpart_ind.value PT_UCHAR

CP_ISUP_INTERW_IND_VALID accept_xparms.unique_xparms.sig_isup.interworking_ind.valid PT_UCHAR

CP_ISUP_INTERW_IND_VALUE accept_xparms.unique_xparms.sig_isup.interworking_ind.value PT_UCHAR

CP_IPTEL_DEST_DISPLAY accept_xparms.unique_xparms.sig_iptel.destination_display_name PT_STRING

CP_IPTEL_CODECS accept_xparms.unique_xparms.sig_iptel.codecs PT_HEXST
R

CP_IPTEL_MEDIA_TDM_ENC accept_xparms.unique_xparms.sig_iptel.media_settings.tdm_encoding PT_INT

CP_IPTEL_MEDIA_ENC_GAIN accept_xparms.unique_xparms.sig_iptel.media_settings.encode_gain PT_INT

CP_IPTEL_MEDIA_DEC_GAIN accept_xparms.unique_xparms.sig_iptel.media_settings.decode_gain PT_INT

CP_IPTEL_MEDIA_ECHO_CANC accept_xparms.unique_xparms.sig_iptel.media_settings.echo_cancellation PT_INT

CP_IPTEL_MEDIA_ECHO_SUPP accept_xparms.unique_xparms.sig_iptel.media_settings.echo_suppression PT_INT

CP_IPTEL_MEDIA_ECHO_SPAN accept_xparms.unique_xparms.sig_iptel.media_settings.echo_span PT_INT

CP_IPTEL_MEDIA_RTP_TOS accept_xparms.unique_xparms.sig_iptel.media_settings.rtp_tos PT_INT

CP_IPTEL_MEDIA_RTCP_TOS accept_xparms.unique_xparms.sig_iptel.media_settings.rtcp_tos PT_INT

CP_IPTEL_MEDIA_DTMF_DET accept_xparms.unique_xparms.sig_iptel.media_settings.dtmf_detector PT_INT

CP_IPTEL_VMPRXID accept_xparms.unique_xparms.sig_iptel.vmprxid PT_HEXST
R

CP_IPTEL_VMPTXID accept_xparms.unique_xparms.sig_iptel.vmptxid PT_HEXST
R

CP_H323_DEST_ALIAS accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.destination_alias PT_STRING

CP_H323_ORIG_ALIAS accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.originating_alias PT_STRING

CP_H323_H245_TUNNELING accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.h245_tunneling PT_INT

CP_H323_FASTSTART accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.faststart PT_INT

CP_H323_EARLY_H245 accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.early_h245 PT_INT

CP_H323_DTMF accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.dtmf PT_STRING

CP_H323_PROGRESS_LOC accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_locatio
n

PT_INT

CP_H323_PROGRESS_DESC accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_descrip
tion

PT_INT

CP_SIP_CONTACT_ADDR accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.contact_address PT_STRING

CP_SIP_ZERO_CONN_ADDR_HOLD accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.zero_connection_a
ddress_hold

PT_INT

CP_SIP_DISABLE_REL_PROV accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_reliable_pr
ovisional_response

PT_INT

CP_SIP_DISABLE_EARLY_MED accept_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_early_med
ia

PT_INT

PARM_TYPE_INRINGING:

parmID Structure and Field it maps to: Field type



p252

© Zentel Telecom Ltd, 2009

CP_Q931_PROGRESS_INDICATOR incoming_ringing_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXST
R

CP_Q931_PROGRESS_LASTMSG incoming_ringing_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_DISPLAY incoming_ringing_xparms.unique_xparms.sig_q931.display.ie PT_HEXST
R

CP_Q931_DISPLAY_LASTMSG incoming_ringing_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_ISUP_PROGRESS_INDICATOR incoming_ringing_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXST
R

CP_ISUP_PROGRESS_LASTMSG incoming_ringing_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_CHARGE_IND incoming_ringing_xparms.unique_xparms.sig_isup.charge_ind PT_UCHAR

CP_ISUP_IN_BAND incoming_ringing_xparms.unique_xparms.sig_isup.in_band PT_UCHAR

CP_ISUP_DEST_CATEGORY incoming_ringing_xparms.unique_xparms.sig_isup.dest_category PT_UCHAR

CP_ISUP_ACC_IND_VALID incoming_ringing_xparms.unique_xparms.sig_isup.isdn_access_ind.valid PT_UCHAR

CP_ISUP_ACC_IND_VALUE incoming_ringing_xparms.unique_xparms.sig_isup.isdn_access_ind.value PT_UCHAR

CP_ISUP_USERP_IND_VALID incoming_ringing_xparms.unique_xparms.sig_isup.isdn_userpart_ind.valid PT_UCHAR

CP_ISUP_USERP_IND_VALUE incoming_ringing_xparms.unique_xparms.sig_isup.isdn_userpart_ind.value PT_UCHAR

CP_ISUP_INTERW_IND_VALID incoming_ringing_xparms.unique_xparms.sig_isup.interworking_ind.valid PT_UCHAR

CP_ISUP_INTERW_IND_VALUE incoming_ringing_xparms.unique_xparms.sig_isup.interworking_ind.value PT_UCHAR

CP_IPTEL_DEST_DISPLAY incoming_ringing_xparms.unique_xparms.sig_iptel.destination_display_name PT_STRING

CP_IPTEL_CODECS incoming_ringing_xparms.unique_xparms.sig_iptel.codecs PT_HEXST
R

CP_IPTEL_MEDIA_TDM_ENC incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.tdm_encoding PT_INT

CP_IPTEL_MEDIA_ENC_GAIN incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.encode_gain PT_INT

CP_IPTEL_MEDIA_DEC_GAIN incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.decode_gain PT_INT

CP_IPTEL_MEDIA_ECHO_CANC incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.echo_cancellation PT_INT

CP_IPTEL_MEDIA_ECHO_SUPP incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.echo_suppression PT_INT

CP_IPTEL_MEDIA_ECHO_SPAN incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.echo_span PT_INT

CP_IPTEL_MEDIA_RTP_TOS incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.rtp_tos PT_INT

CP_IPTEL_MEDIA_RTCP_TOS incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.rtcp_tos PT_INT

CP_IPTEL_MEDIA_DTMF_DET incoming_ringing_xparms.unique_xparms.sig_iptel.media_settings.dtmf_detector PT_INT

CP_IPTEL_VMPRXID incoming_ringing_xparms.unique_xparms.sig_iptel.vmprxid PT_HEXST
R

CP_IPTEL_VMPTXID incoming_ringing_xparms.unique_xparms.sig_iptel.vmptxid PT_HEXST
R

CP_H323_H245_TUNNELING incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.h245
_tunneling

PT_INT

CP_H323_FASTSTART incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.fastst
art

PT_INT

CP_H323_EARLY_H245 incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.early
_h245

PT_INT

CP_H323_PROGRESS_LOC incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progr
ess_location

PT_INT

CP_H323_PROGRESS_DESC incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progr
ess_description

PT_INT

CP_SIP_CONTACT_ADDR incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.contact
_address

PT_STRING

CP_SIP_SEND_EARLY_MED incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.send_ea
rly_media

PT_INT

CP_SIP_USE_183 incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.use_18
3_response_for_early_media

PT_INT

CP_SIP_SEND_REL_PROV incoming_ringing_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.send_re
liable_provisional_response

PT_INT

PARM_TYPE_DISCON:

parmID Structure and Field it maps to: Field type



p253

© Zentel Telecom Ltd, 2009

CP_Q931_CAUSE_RAW discon_xparms.unique_xparms.sig_q931.raw PT_INT

CP_Q931_PROGRESS_INDICATOR discon_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXST
R

CP_Q931_PROGRESS_LASTMSG discon_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_DISPLAY discon_xparms.unique_xparms.sig_q931.display.ie PT_HEXST
R

CP_Q931_DISPLAY_LASTMSG discon_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_Q931_NOTIFY_INDICATOR discon_xparms.unique_xparms.sig_q931.notify_indicator.ie PT_HEXST
R

CP_Q931_NOTIFY_LASTMSG discon_xparms.unique_xparms.sig_q931.notify_indicator.last_msg PT_UCHAR

CP_Q931_CAUSE_LOC discon_xparms.unique_xparms.sig_q931.location PT_INT

CP_ISUP_CAUSE_RAW discon_xparms.unique_xparms.sig_isup.raw PT_INT

CP_ISUP_PROGRESS_INDICATOR discon_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXST
R

CP_ISUP_PROGRESS_LASTMSG discon_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_CAUSE_LOC discon_xparms.unique_xparms.sig_isup.location PT_INT

CP_ISUP_REATTEMPT discon_xparms.unique_xparms.sig_isup.reattempt PT_INT

CP_ITR6_CAUSE_RAW discon_xparms.unique_xparms.sig_1tr6.raw PT_INT

CP_DASS_CAUSE_RAW discon_xparms.unique_xparms.sig_dass.raw PT_INT

CP_DPNSS_CAUSE_RAW discon_xparms.unique_xparms.sig_dpnss.raw PT_INT

CP_CAS_CAUSE_RAW discon_xparms.unique_xparms.sig_cas.raw PT_INT

PARM_TYPE_OUT:

parmID Structure and Field it maps to: Field
type

CP_Q931_SERVICE_OCTET out_xparms.unique_xparms.sig_q931.service_octet PT_UCHAR

CP_Q931_ADD_INFO_OCTET out_xparms.unique_xparms.sig_q931.add_info_octet PT_UCHAR

CP_Q931_DEST_NUMBERING_TYPE out_xparms.unique_xparms.sig_q931.dest_numbering_type PT_UCHAR

CP_Q931_DEST_NUMBERING_PLAN out_xparms.unique_xparms.sig_q931.dest_numbering_plan PT_UCHAR

CP_Q931_BEARER out_xparms.unique_xparms.sig_q931.bearer.ie PT_HEXST
R

CP_Q931_BEARER_LASTMSG out_xparms.unique_xparms.sig_q931.bearer.last_msg PT_UCHAR

CP_Q931_ORIG_NUMBERING_TYPE out_xparms.unique_xparms.sig_q931.orig_numbering_type PT_UCHAR

CP_Q931_ORIG_NUMBERING_PLAN out_xparms.unique_xparms.sig_q931.orig_numbering_plan PT_UCHAR

CP_Q931_ORIG_NUMBERING_PRESENTATI
ON

out_xparms.unique_xparms.sig_q931.orig_numbering_presentation PT_UCHAR

CP_Q931_ORIG_NUMBERING_SCREENING out_xparms.unique_xparms.sig_q931.orig_numbering_screening PT_UCHAR

CP_Q931_CONN_NUMBERING_TYPE out_xparms.unique_xparms.sig_q931.conn_numbering_type PT_UCHAR

CP_Q931_CONN_NUMBERING_PLAN out_xparms.unique_xparms.sig_q931.conn_numbering_plan PT_UCHAR

CP_Q931_CONN_NUMBERING_PRESENTAT
ION

out_xparms.unique_xparms.sig_q931.conn_numbering_presentation PT_UCHAR

CP_Q931_CONN_NUMBERING_SCREENING out_xparms.unique_xparms.sig_q931.conn_numbering_screening PT_UCHAR

CP_Q931_DEST_SUBADDR out_xparms.unique_xparms.sig_q931.dest_subaddr PT_HEXST
R

CP_Q931_ORIG_SUBADDR out_xparms.unique_xparms.sig_q931.orig_subaddr PT_HEXST
R

CP_Q931_HILAYER out_xparms.unique_xparms.sig_q931.hilayer.ie PT_HEXST
R

CP_Q931_HILAYER_LASTMSG out_xparms.unique_xparms.sig_q931.hilayer.last_msg PT_UCHAR

CP_Q931_LOLAYER out_xparms.unique_xparms.sig_q931.lolayer.ie PT_HEXST
R

CP_Q931_LOLAYER_LASTMSG out_xparms.unique_xparms.sig_q931.lolayer.last_msg PT_UCHAR

CP_Q931_PROGRESS_INDICATOR out_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXST



p254

© Zentel Telecom Ltd, 2009

R

CP_Q931_PROGRESS_LASTMSG out_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_NOTIFY_INDICATOR out_xparms.unique_xparms.sig_q931.notify_indicator.ie PT_HEXST
R

CP_Q931_NOTIFY_LASTMSG out_xparms.unique_xparms.sig_q931.notify_indicator.last_msg PT_UCHAR

CP_Q931_KEYPAD out_xparms.unique_xparms.sig_q931.keypad.ie PT_HEXST
R

CP_Q931_KEYPAD_LASTMSG out_xparms.unique_xparms.sig_q931.keypad.last_msg PT_UCHAR

CP_Q931_DISPLAY out_xparms.unique_xparms.sig_q931.display.ie PT_HEXST
R

CP_Q931_DISPLAY_LASTMSG out_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_Q931_SLOTMAP out_xparms.unique_xparms.sig_q931.slotmap PT_LONG

CP_Q931_EP_USID out_xparms.unique_xparms.sig_q931.endpoint_id.usid PT_UCHAR

CP_Q931_EP_TID out_xparms.unique_xparms.sig_q931.endpoint_id.tid PT_UCHAR

CP_Q931_EP_INTERPRETER out_xparms.unique_xparms.sig_q931.endpoint_id.interpreter PT_UCHAR

CP_Q931_CAUSE out_xparms.unique_xparms.sig_q931.cause.ie PT_HEXST
R

CP_Q931_CAUSE_LASTMSG out_xparms.unique_xparms.sig_q931.cause.last_msg PT_UCHAR

CP_Q931_ADD_ORIG_ADDR out_xparms.unique_xparms.sig_q931.additional_orig_addr PT_HEXST
R

CP_Q931_ADD_ORIG_NUMBERING_TYPE out_xparms.unique_xparms.sig_q931.add_orig_numbering_type PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PLAN out_xparms.unique_xparms.sig_q931.add_orig_numbering_plan PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PRESE
NTATION

out_xparms.unique_xparms.sig_q931.add_orig_numbering_presentation PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_SCREE
NING

out_xparms.unique_xparms.sig_q931.add_orig_numbering_screening PT_UCHAR

CP_Q931_OMIT_CALLING_PARTY_IE out_xparms.unique_xparms.sig_q931.omit_calling_party_ie PT_UCHAR

CP_Q931_CALL_REF out_xparms.unique_xparms.sig_q931.call_ref_value PT_ULONG

CP_DASS_SIC1 out_xparms.unique_xparms.sig_dass.sic1 PT_UCHAR

CP_DASS_SIC2 out_xparms.unique_xparms.sig_dass.sic2 PT_UCHAR

CP_DPNSS_SIC1 out_xparms.unique_xparms.sig_dpnss.sic1 PT_UCHAR

CP_DPNSS_SIC2 out_xparms.unique_xparms.sig_dpnss.sic2 PT_UCHAR

CP_DPNSS_CLC out_xparms.unique_xparms.sig_dpnss.clc PT_STRIN
G

CP_CAS_CATEGORY out_xparms.unique_xparms.sig_cas.category PT_UCHAR

CP_ISUP_SERVICE_OCTET out_xparms.unique_xparms.sig_isup.service_octet PT_UCHAR

CP_ISUP_ADD_INFO_OCTET out_xparms.unique_xparms.sig_isup.add_info_octet PT_UCHAR

CP_ISUP_DEST_NATUREOF_ADDR out_xparms.unique_xparms.sig_isup.dest_natureof_addr PT_UCHAR

CP_ISUP_DEST_NUMBERING_PLAN out_xparms.unique_xparms.sig_isup.dest_numbering_plan PT_UCHAR

CP_ISUP_BEARER out_xparms.unique_xparms.sig_isup.bearer.ie PT_HEXST
R

CP_ISUP_BEARER_LASTMSG out_xparms.unique_xparms.sig_isup.bearer.last_msg PT_UCHAR

CP_ISUP_ORIG_NATUREOF_ADDR out_xparms.unique_xparms.sig_isup.orig_natureof_addr PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PLAN out_xparms.unique_xparms.sig_isup.orig_numbering_plan PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PRESENTATI
ON

out_xparms.unique_xparms.sig_isup.orig_numbering_presentation PT_UCHAR

CP_ISUP_ORIG_NUMBERING_SCREENING out_xparms.unique_xparms.sig_isup.orig_numbering_screening PT_UCHAR

CP_ISUP_CONN_NATUREOF_ADDR out_xparms.unique_xparms.sig_isup.conn_natureof_addr PT_UCHAR

CP_ISUP_CONN_NUMBERING_PLAN out_xparms.unique_xparms.sig_isup.conn_numbering_plan PT_UCHAR

CP_ISUP_CONN_NUMBERING_PRESENTATI
ON

out_xparms.unique_xparms.sig_isup.conn_numbering_presentation PT_UCHAR

CP_ISUP_CONN_NUMBERING_SCREENING out_xparms.unique_xparms.sig_isup.conn_numbering_screening PT_UCHAR

CP_ISUP_CONN_NUMBER_REQ out_xparms.unique_xparms.sig_isup.conn_number_req PT_UCHAR

CP_ISUP_ORIG_CATEGORY out_xparms.unique_xparms.sig_isup.orig_category PT_UCHAR



p255

© Zentel Telecom Ltd, 2009

CP_ISUP_ORIG_NUMBER_INCOMPLETE out_xparms.unique_xparms.sig_isup.orig_number_incomplete PT_UCHAR

CP_ISUP_DEST_SUBADDR out_xparms.unique_xparms.sig_isup.dest_subaddr PT_HEXST
R

CP_ISUP_ORIG_SUBADDR out_xparms.unique_xparms.sig_isup.orig_subaddr PT_HEXST
R

CP_ISUP_HILAYER out_xparms.unique_xparms.sig_isup.hilayer.ie PT_HEXST
R

CP_ISUP_HILAYER_LASTMSG out_xparms.unique_xparms.sig_isup.hilayer.last_msg PT_UCHAR

CP_ISUP_LOLAYER out_xparms.unique_xparms.sig_isup.lolayer.ie PT_HEXST
R

CP_ISUP_LOLAYER_LASTMSG out_xparms.unique_xparms.sig_isup.lolayer.last_msg PT_UCHAR

CP_ISUP_PROGRESS_INDICATOR out_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXST
R

CP_ISUP_PROGRESS_LASTMSG out_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_IN_BAND out_xparms.unique_xparms.sig_isup.in_band PT_UCHAR

CP_ISUP_NAT_INTER_CALL_IND out_xparms.unique_xparms.sig_isup.nat_inter_call_ind PT_UCHAR

CP_ISUP_INTERWORKING_IND out_xparms.unique_xparms.sig_isup.interworking_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_IND out_xparms.unique_xparms.sig_isup.isdn_userpart_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_PREF_IND out_xparms.unique_xparms.sig_isup.isdn_userpart_pref_ind PT_UCHAR

CP_ISUP_ISDN_ACCESS_IND out_xparms.unique_xparms.sig_isup.isdn_access_ind PT_UCHAR

CP_ISUP_DEST_INT_NW_IND out_xparms.unique_xparms.sig_isup.dest_int_nw_ind PT_UCHAR

CP_ISUP_CONTINUITY_CHECK_IND out_xparms.unique_xparms.sig_isup.continuity_check_ind PT_UCHAR

CP_ISUP_SATELLITE_IND out_xparms.unique_xparms.sig_isup.satellite_ind PT_UCHAR

CP_ISUP_CHARGE_IND out_xparms.unique_xparms.sig_isup.charge_ind PT_UCHAR

CP_ISUP_DEST_CATEGORY out_xparms.unique_xparms.sig_isup.dest_category PT_UCHAR

CP_ISUP_ADD_CALL_NUM_QUAL out_xparms.unique_xparms.sig_isup.add_calling_num_qualifier_ind PT_UCHAR

CP_ISUP_ADD_CALL_NUM_NOAI out_xparms.unique_xparms.sig_isup.add_calling_num_natureof_addr PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PLAN out_xparms.unique_xparms.sig_isup.add_calling_num_plan PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PRESENT out_xparms.unique_xparms.sig_isup.add_calling_num_presentation PT_UCHAR

CP_ISUP_ADD_CALL_NUM_SCREEN out_xparms.unique_xparms.sig_isup.add_calling_num_screening PT_UCHAR

CP_ISUP_ADD_CALL_NUM_INCOMP out_xparms.unique_xparms.sig_isup.add_calling_num_incomplete PT_UCHAR

CP_ISUP_ADD_CALL_NUM out_xparms.unique_xparms.sig_isup.add_calling_num PT_HEXST
R

CP_ISUP_EXCHANGE_TYPE out_xparms.unique_xparms.sig_isup.exchange_type PT_UCHAR

CP_ISUP_COLLECT_CALL out_xparms.unique_xparms.sig_isup.collect_call_request_ind PT_UCHAR

CP_IPTEL_DEST_DISPLAY out_xparms.unique_xparms.sig_iptel.destination_display_name PT_STRIN
G

CP_IPTEL_ORIG_DISPLAY out_xparms.unique_xparms.sig_iptel.originating_display_name PT_STRIN
G

CP_IPTEL_CODECS out_xparms.unique_xparms.sig_iptel.codecs PT_HEXST
R

CP_IPTEL_MEDIA_TDM_ENC out_xparms.unique_xparms.sig_iptel.media_settings.tdm_encoding PT_INT

CP_IPTEL_MEDIA_ENC_GAIN out_xparms.unique_xparms.sig_iptel.media_settings.encode_gain PT_INT

CP_IPTEL_MEDIA_DEC_GAIN out_xparms.unique_xparms.sig_iptel.media_settings.decode_gain PT_INT

CP_IPTEL_MEDIA_ECHO_CANC out_xparms.unique_xparms.sig_iptel.media_settings.echo_cancellation PT_INT

CP_IPTEL_MEDIA_ECHO_SUPP out_xparms.unique_xparms.sig_iptel.media_settings.echo_suppression PT_INT

CP_IPTEL_MEDIA_ECHO_SPAN out_xparms.unique_xparms.sig_iptel.media_settings.echo_span PT_INT

CP_IPTEL_MEDIA_RTP_TOS out_xparms.unique_xparms.sig_iptel.media_settings.rtp_tos PT_INT

CP_IPTEL_MEDIA_RTCP_TOS out_xparms.unique_xparms.sig_iptel.media_settings.rtcp_tos PT_INT

CP_IPTEL_MEDIA_DTMF_DET out_xparms.unique_xparms.sig_iptel.media_settings.dtmf_detector PT_INT

CP_IPTEL_VMPRXID out_xparms.unique_xparms.sig_iptel.vmprxid PT_HEXST
R

CP_IPTEL_VMPTXID out_xparms.unique_xparms.sig_iptel.vmptxid PT_HEXST
R



p256

© Zentel Telecom Ltd, 2009

CP_IPTEL_MEDIA_CALL_TYPE out_xparms.unique_xparms.sig_iptel.media_call_type PT_STRIN
G

CP_H323_DEST_ALIAS out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.destination_al
ias

PT_STRIN
G

CP_H323_ORIG_ALIAS out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.originating_al
ias

PT_STRIN
G

CP_H323_H245_TUNNELING out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.h245_tunneli
ng

PT_INT

CP_H323_FASTSTART out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.faststart PT_INT

CP_H323_EARLY_H245 out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.early_h245 PT_INT

CP_H323_DTMF out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.dtmf PT_STRIN
G

CP_H323_PROGRESS_LOC out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_locat
ion

PT_INT

CP_H323_PROGRESS_DESC out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_desc
ription

PT_INT

CP_SIP_CONTACT_ADDR out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.contact_address PT_STRIN
G

CP_SIP_ZERO_CONN_ADDR_HOLD out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.zero_connection
_address_hold

PT_INT

CP_SIP_DISABLE_REL_PROV out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_reliable
_provisional_response

PT_INT

CP_SIP_DISABLE_EARLY_MED out_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_early_m
edia

PT_INT

PARM_TYPE_IN:

parmID Structure and Field it maps to: Field
type

CP_Q931_SERVICE_OCTET in_xparms.unique_xparms.sig_q931.service_octet PT_UCHAR

CP_Q931_ADD_INFO_OCTET in_xparms.unique_xparms.sig_q931.add_info_octet PT_UCHAR

CP_Q931_DEST_NUMBERING_TYPE in_xparms.unique_xparms.sig_q931.dest_numbering_type PT_UCHAR

CP_Q931_DEST_NUMBERING_PLAN in_xparms.unique_xparms.sig_q931.dest_numbering_plan PT_UCHAR

CP_Q931_BEARER in_xparms.unique_xparms.sig_q931.bearer.ie PT_HEXST
R

CP_Q931_BEARER_LASTMSG in_xparms.unique_xparms.sig_q931.bearer.last_msg PT_UCHAR

CP_Q931_ORIG_NUMBERING_TYPE in_xparms.unique_xparms.sig_q931.orig_numbering_type PT_UCHAR

CP_Q931_ORIG_NUMBERING_PLAN in_xparms.unique_xparms.sig_q931.orig_numbering_plan PT_UCHAR

CP_Q931_ORIG_NUMBERING_PRESENTATI
ON

in_xparms.unique_xparms.sig_q931.orig_numbering_presentation PT_UCHAR

CP_Q931_ORIG_NUMBERING_SCREENING in_xparms.unique_xparms.sig_q931.orig_numbering_screening PT_UCHAR

CP_Q931_CONN_NUMBERING_TYPE in_xparms.unique_xparms.sig_q931.conn_numbering_type PT_UCHAR

CP_Q931_CONN_NUMBERING_PLAN in_xparms.unique_xparms.sig_q931.conn_numbering_plan PT_UCHAR

CP_Q931_CONN_NUMBERING_PRESENTAT
ION

in_xparms.unique_xparms.sig_q931.conn_numbering_presentation PT_UCHAR

CP_Q931_CONN_NUMBERING_SCREENING
 

in_xparms.unique_xparms.sig_q931.conn_numbering_screening PT_UCHAR

CP_Q931_DEST_SUBADDR in_xparms.unique_xparms.sig_q931.dest_subaddr PT_HEXST
R

CP_Q931_ORIG_SUBADDR in_xparms.unique_xparms.sig_q931.orig_subaddr PT_HEXST
R

CP_Q931_HILAYER in_xparms.unique_xparms.sig_q931.hilayer.ie PT_HEXST
R

CP_Q931_HILAYER_LASTMSG in_xparms.unique_xparms.sig_q931.hilayer.last_msg PT_UCHAR

CP_Q931_LOLAYER in_xparms.unique_xparms.sig_q931.lolayer.ie PT_HEXST
R

CP_Q931_LOLAYER_LASTMSG in_xparms.unique_xparms.sig_q931.lolayer.last_msg PT_UCHAR



p257

© Zentel Telecom Ltd, 2009

CP_Q931_PROGRESS_INDICATOR in_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXST
R

CP_Q931_PROGRESS_LASTMSG in_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_NOTIFY_INDICATOR in_xparms.unique_xparms.sig_q931.notify_indicator.ie PT_HEXST
R

CP_Q931_NOTIFY_LASTMSG in_xparms.unique_xparms.sig_q931.notify_indicator.last_msg PT_UCHAR

CP_Q931_KEYPAD in_xparms.unique_xparms.sig_q931.keypad.ie PT_HEXST
R

CP_Q931_KEYPAD_LASTMSG in_xparms.unique_xparms.sig_q931.keypad.last_msg PT_UCHAR

CP_Q931_DISPLAY in_xparms.unique_xparms.sig_q931.display.ie PT_HEXST
R

CP_Q931_DISPLAY_LASTMSG in_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_Q931_SLOTMAP in_xparms.unique_xparms.sig_q931.slotmap PT_LONG

CP_Q931_EP_USID in_xparms.unique_xparms.sig_q931.endpoint_id.usid PT_UCHAR

CP_Q931_EP_TID in_xparms.unique_xparms.sig_q931.endpoint_id.tid PT_UCHAR

CP_Q931_EP_INTERPRETER in_xparms.unique_xparms.sig_q931.endpoint_id.interpreter PT_UCHAR

CP_Q931_CAUSE in_xparms.unique_xparms.sig_q931.cause.ie PT_HEXST
R

CP_Q931_CAUSE_LASTMSG in_xparms.unique_xparms.sig_q931.cause.last_msg PT_UCHAR

CP_Q931_ADD_ORIG_ADDR in_xparms.unique_xparms.sig_q931.additional_orig_addr PT_HEXST
R

CP_Q931_ADD_ORIG_NUMBERING_TYPE in_xparms.unique_xparms.sig_q931.add_orig_numbering_type PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PLAN in_xparms.unique_xparms.sig_q931.add_orig_numbering_plan PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PRESE
NTATION

in_xparms.unique_xparms.sig_q931.add_orig_numbering_presentation PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_SCREE
NING

in_xparms.unique_xparms.sig_q931.add_orig_numbering_screening PT_UCHAR

CP_Q931_OMIT_CALLING_PARTY_IE in_xparms.unique_xparms.sig_q931.omit_calling_party_ie PT_UCHAR

CP_Q931_CALL_REF in_xparms.unique_xparms.sig_q931.call_ref_value PT_ULONG

CP_DASS_SIC1 in_xparms.unique_xparms.sig_dass.sic1 PT_UCHAR

CP_DASS_SIC2 in_xparms.unique_xparms.sig_dass.sic2 PT_UCHAR

CP_DPNSS_SIC1 in_xparms.unique_xparms.sig_dpnss.sic1 PT_UCHAR

CP_DPNSS_SIC2 in_xparms.unique_xparms.sig_dpnss.sic2 PT_UCHAR

CP_DPNSS_CLC in_xparms.unique_xparms.sig_dpnss.clc PT_STRING

CP_CAS_CATEGORY in_xparms.unique_xparms.sig_cas.category PT_UCHAR

CP_ISUP_SERVICE_OCTET in_xparms.unique_xparms.sig_isup.service_octet PT_UCHAR

CP_ISUP_ADD_INFO_OCTET in_xparms.unique_xparms.sig_isup.add_info_octet PT_UCHAR

CP_ISUP_DEST_NATUREOF_ADDR in_xparms.unique_xparms.sig_isup.dest_natureof_addr PT_UCHAR

CP_ISUP_DEST_NUMBERING_PLAN in_xparms.unique_xparms.sig_isup.dest_numbering_plan PT_UCHAR

CP_ISUP_BEARER in_xparms.unique_xparms.sig_isup.bearer.ie PT_HEXST
R

CP_ISUP_BEARER_LASTMSG in_xparms.unique_xparms.sig_isup.bearer.last_msg PT_UCHAR

CP_ISUP_ORIG_NATUREOF_ADDR in_xparms.unique_xparms.sig_isup.orig_natureof_addr PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PLAN in_xparms.unique_xparms.sig_isup.orig_numbering_plan PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PRESENTATI
ON

in_xparms.unique_xparms.sig_isup.orig_numbering_presentation PT_UCHAR

CP_ISUP_ORIG_NUMBERING_SCREENING in_xparms.unique_xparms.sig_isup.orig_numbering_screening PT_UCHAR

CP_ISUP_CONN_NATUREOF_ADDR in_xparms.unique_xparms.sig_isup.conn_natureof_addr PT_UCHAR

CP_ISUP_CONN_NUMBERING_PLAN in_xparms.unique_xparms.sig_isup.conn_numbering_plan PT_UCHAR

CP_ISUP_CONN_NUMBERING_PRESENTAT
ION

in_xparms.unique_xparms.sig_isup.conn_numbering_presentation PT_UCHAR

CP_ISUP_CONN_NUMBERING_SCREENING in_xparms.unique_xparms.sig_isup.conn_numbering_screening PT_UCHAR

CP_ISUP_CONN_NUMBER_REQ in_xparms.unique_xparms.sig_isup.conn_number_req PT_UCHAR

CP_ISUP_ORIG_CATEGORY in_xparms.unique_xparms.sig_isup.orig_category PT_UCHAR



p258

© Zentel Telecom Ltd, 2009

CP_ISUP_ORIG_NUMBER_INCOMPLETE in_xparms.unique_xparms.sig_isup.orig_number_incomplete PT_UCHAR

CP_ISUP_DEST_SUBADDR in_xparms.unique_xparms.sig_isup.dest_subaddr PT_HEXST
R

CP_ISUP_ORIG_SUBADDR in_xparms.unique_xparms.sig_isup.orig_subaddr PT_HEXST
R

CP_ISUP_HILAYER in_xparms.unique_xparms.sig_isup.hilayer.ie PT_HEXST
R

CP_ISUP_HILAYER_LASTMSG in_xparms.unique_xparms.sig_isup.hilayer.last_msg PT_UCHAR

CP_ISUP_LOLAYER in_xparms.unique_xparms.sig_isup.lolayer.ie PT_HEXST
R

CP_ISUP_LOLAYER_LASTMSG in_xparms.unique_xparms.sig_isup.lolayer.last_msg PT_UCHAR

CP_ISUP_PROGRESS_INDICATOR in_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXST
R

CP_ISUP_PROGRESS_LASTMSG in_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_IN_BAND in_xparms.unique_xparms.sig_isup.in_band PT_UCHAR

CP_ISUP_NAT_INTER_CALL_IND in_xparms.unique_xparms.sig_isup.nat_inter_call_ind PT_UCHAR

CP_ISUP_INTERWORKING_IND in_xparms.unique_xparms.sig_isup.interworking_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_IND in_xparms.unique_xparms.sig_isup.isdn_userpart_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_PREF_IND in_xparms.unique_xparms.sig_isup.isdn_userpart_pref_ind PT_UCHAR

CP_ISUP_ISDN_ACCESS_IND in_xparms.unique_xparms.sig_isup.isdn_access_ind PT_UCHAR

CP_ISUP_DEST_INT_NW_IND in_xparms.unique_xparms.sig_isup.dest_int_nw_ind PT_UCHAR

CP_ISUP_CONTINUITY_CHECK_IND in_xparms.unique_xparms.sig_isup.continuity_check_ind PT_UCHAR

CP_ISUP_SATELLITE_IND in_xparms.unique_xparms.sig_isup.satellite_ind PT_UCHAR

CP_ISUP_CHARGE_IND in_xparms.unique_xparms.sig_isup.charge_ind PT_UCHAR

CP_ISUP_DEST_CATEGORY in_xparms.unique_xparms.sig_isup.dest_category PT_UCHAR

CP_ISUP_ADD_CALL_NUM_QUAL in_xparms.unique_xparms.sig_isup.add_calling_num_qualifier_ind PT_UCHAR

CP_ISUP_ADD_CALL_NUM_NOAI in_xparms.unique_xparms.sig_isup.add_calling_num_natureof_addr PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PLAN in_xparms.unique_xparms.sig_isup.add_calling_num_plan PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PRESENT in_xparms.unique_xparms.sig_isup.add_calling_num_presentation PT_UCHAR

CP_ISUP_ADD_CALL_NUM_SCREEN in_xparms.unique_xparms.sig_isup.add_calling_num_screening PT_UCHAR

CP_ISUP_ADD_CALL_NUM_INCOMP in_xparms.unique_xparms.sig_isup.add_calling_num_incomplete PT_UCHAR

CP_ISUP_ADD_CALL_NUM in_xparms.unique_xparms.sig_isup.add_calling_num PT_HEXST
R

CP_ISUP_EXCHANGE_TYPE in_xparms.unique_xparms.sig_isup.exchange_type PT_UCHAR

CP_ISUP_COLLECT_CALL in_xparms.unique_xparms.sig_isup.collect_call_request_ind PT_UCHAR

CP_IPTEL_DEST_DISPLAY in_xparms.unique_xparms.sig_iptel.destination_display_name PT_STRING

CP_IPTEL_ORIG_DISPLAY in_xparms.unique_xparms.sig_iptel.originating_display_name PT_STRING

CP_IPTEL_CODECS in_xparms.unique_xparms.sig_iptel.codecs PT_HEXST
R

CP_IPTEL_MEDIA_TDM_ENC in_xparms.unique_xparms.sig_iptel.media_settings.tdm_encoding PT_INT

CP_IPTEL_MEDIA_ENC_GAIN in_xparms.unique_xparms.sig_iptel.media_settings.encode_gain PT_INT

CP_IPTEL_MEDIA_DEC_GAIN in_xparms.unique_xparms.sig_iptel.media_settings.decode_gain PT_INT

CP_IPTEL_MEDIA_ECHO_CANC in_xparms.unique_xparms.sig_iptel.media_settings.echo_cancellation PT_INT

CP_IPTEL_MEDIA_ECHO_SUPP in_xparms.unique_xparms.sig_iptel.media_settings.echo_suppression PT_INT

CP_IPTEL_MEDIA_ECHO_SPAN in_xparms.unique_xparms.sig_iptel.media_settings.echo_span PT_INT

CP_IPTEL_MEDIA_RTP_TOS in_xparms.unique_xparms.sig_iptel.media_settings.rtp_tos PT_INT

CP_IPTEL_MEDIA_RTCP_TOS in_xparms.unique_xparms.sig_iptel.media_settings.rtcp_tos PT_INT

CP_IPTEL_MEDIA_DTMF_DET in_xparms.unique_xparms.sig_iptel.media_settings.dtmf_detector PT_INT

CP_IPTEL_VMPRXID in_xparms.unique_xparms.sig_iptel.vmprxid PT_HEXST
R

CP_IPTEL_VMPTXID in_xparms.unique_xparms.sig_iptel.vmptxid PT_HEXST
R

CP_IPTEL_MEDIA_CALL_TYPE in_xparms.unique_xparms.sig_iptel.media_call_type PT_STRING



p259

© Zentel Telecom Ltd, 2009

CP_H323_DEST_ALIAS in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.destination_ali
as

PT_STRING

CP_H323_ORIG_ALIAS in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.originating_ali
as

PT_STRING

CP_H323_H245_TUNNELING in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.h245_tunneling PT_INT

CP_H323_FASTSTART in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.faststart PT_INT

CP_H323_EARLY_H245 in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.early_h245 PT_INT

CP_H323_DTMF in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.dtmf PT_STRING

CP_H323_PROGRESS_LOC in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_locati
on

PT_INT

CP_H323_PROGRESS_DESC in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_descri
ption

PT_INT

CP_SIP_CONTACT_ADDR in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.contact_address PT_STRING

CP_SIP_ZERO_CONN_ADDR_HOLD in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.zero_connection_
address_hold

PT_INT

CP_SIP_DISABLE_REL_PROV in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_reliable_
provisional_response

PT_INT

CP_SIP_DISABLE_EARLY_MED in_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_early_me
dia

PT_INT

In the previous tables the third column defines the type of value that the field can be set to and thus
defines how the value argument of the CCsetparm() function call is treated.           A description of
each of these types is given below:

PT_CHAR Single byte signed integer (range -127 to +127)
PT_UCHA
R

Single byte unsigned integer (range (0 to 255)

PT_INT Two byte unsigned integer (range -32767 to +32767)
PT_UINT Two byte unsigned integer (range 0 to 65535)
PT_LONG Four byte signed integer (range -2147483647 to +2147483647)
PT_ULON
G

Four byte signed integer (range 0 to 4294967295)

PT_STRIN
G

Literal string value

PT_HEXST
R

This is a special type where the data stored in the field is not one of the above types
and is instead a multi-byte non-string field with arbitrary structure.     For fields of
this type the value passed to the CCsetparm() function should be in the form of a
Hexadecimal string where each byte value is represented in the string by a two
hexadecimal characters.    

The  PT_HEXSTR  type  above  probably  needs  more  clarification  and  the  example  shown  below
should make the use of this type more clear.   

In the PARM_TYPE_IN and PARM_TYPE_OUT parameters the CP_IPCODECS field allows the
list of supported IP codecs to be specified in order of priority.    This parameter is in fact an array of
ACU_CODEC structures which have the structure shown below:

struct acu_codec {



p260

© Zentel Telecom Ltd, 2009

             ACU_INT   codec_type;

             ACU_INT   vad;

             ACU_INT   fpp;

             ACU_ULONG options;

}

So each element in the array consists of a 10 byte structure which can be represented as a 20 digit
HEXSTR.      For  example  to  set  the  CP_IPCODECS array  to  contain  only  one  element  with  a
codec_type of 1 (G711_ALAW), Voice activation off (vad=0) and frames per packet (fpp) to 2 then
the following call would be made:

x=CCsetparm(port,chan,PARM_TYPE_IN,CP_IPCODECS,”01000000020000000000”);

There are a number of helper functions that provide the means to build up these Hex strings bit by
bit which will be described later.

NOTE:  Once a parameter has been set in one of the extended structures then the extended
version  of  the  Aculab  function  call  will  be  used  from  then  on,   until  a  call  is  made  to
CCclrparms() which clears all the values from the extended structure (see below).

The full set of ParmID values that are used in this function and which are specified in the above
table are defined in the ACULAB.INC file as follows:

const CP_VALID                                =1;

const CP_STREAM                               =2;

const CP_TS                                   =3;

const CP_CALLTYPE                             =4;

const CP_SENDING_COMPLETE                     =5;

const CP_DESTINATION_ADDR                     =6;

const CP_ORIGINATING_ADDR                     =7;

const CP_CONNECTED_ADDR                       =8;

const CP_FEATURE_INFORMATION                  =9;

const CP_Q931_SERVICE_OCTET                   =101;

const CP_Q931_ADD_INFO_OCTET                  =102;

const CP_Q931_DEST_NUMBERING_TYPE             =103;

const CP_Q931_DEST_NUMBERING_PLAN             =104;

const CP_Q931_BEARER                          =105;

const CP_Q931_ORIG_NUMBERING_TYPE             =106;

const CP_Q931_ORIG_NUMBERING_PLAN             =107;

const CP_Q931_ORIG_NUMBERING_PRESENTATION     =108;

const CP_Q931_ORIG_NUMBERING_SCREENING        =109;

const CP_Q931_CONN_NUMBERING_TYPE             =110;

const CP_Q931_CONN_NUMBERING_PLAN             =111;

const CP_Q931_CONN_NUMBERING_PRESENTATION     =112;

const CP_Q931_CONN_NUMBERING_SCREENING        =113;

const CP_Q931_DEST_SUBADDR                    =114;

const CP_Q931_ORIG_SUBADDR                    =115;

const CP_Q931_HILAYER                         =116;

const CP_Q931_LOLAYER                         =117;

const CP_Q931_PROGRESS_INDICATOR              =118;

const CP_Q931_NOTIFY_INDICATOR                =119;

const CP_Q931_KEYPAD                          =120;

const CP_Q931_DISPLAY                         =121;

const CP_Q931_SLOTMAP                         =122;

const CP_Q931_EP_USID                         =123;

const CP_Q931_EP_TID                          =124;

const CP_Q931_EP_INTERPRETER                  =125;

const CP_Q931_BEARER_LASTMSG                  =126;



p261

© Zentel Telecom Ltd, 2009

const CP_Q931_HILAYER_LASTMSG                 =127;

const CP_Q931_LOLAYER_LASTMSG                 =128;

const CP_Q931_PROGRESS_LASTMSG                =129;

const CP_Q931_NOTIFY_LASTMSG                  =130;

const CP_Q931_KEYPAD_LASTMSG                  =131;

const CP_Q931_DISPLAY_LASTMSG                 =132;

const CP_Q931_CAUSE                           =133;

const CP_Q931_CAUSE_LASTMSG                   =134;

const CP_Q931_ADD_ORIG_ADDR                   =135;

const CP_Q931_ADD_ORIG_NUMBERING_TYPE         =136;

const CP_Q931_ADD_ORIG_NUMBERING_PLAN         =137;

const CP_Q931_ADD_ORIG_NUMBERING_PRESENTATION =138;

const CP_Q931_ADD_ORIG_NUMBERING_SCREENING    =139;

const CP_Q931_OMIT_CALLING_PARTY_IE           =140;

const CP_Q931_CALL_REF                        =141;

const CP_Q931_CONN_ADDR                       =142;

const CP_Q931_CAUSE_RAW                       =143;

const CP_Q931_CAUSE_LOC                       =144;

const CP_1TR6_SERVICE_OCTET                   =201;

const CP_1TR6_ADD_INFO_OCTET                  =202;

const CP_1TR6_NUMBERING_TYPE                  =203;

const CP_1TR6_NUMBERING_PLAN                  =204;

const CP_ITR6_CAUSE_RAW                       =205;

const CP_DASS_SIC1                            =301;

const CP_DASS_SIC2                            =302;

const CP_DASS_CAUSE_RAW                       =303;

const CP_DPNSS_SIC1                           =401;

const CP_DPNSS_SIC2                           =402;

const CP_DPNSS_CLC                            =403;

const CP_DPNSS_CAUSE_RAW                      =404;

const CP_CAS_CATEGORY                         =501;

const CP_CAS_CAUSE_RAW                        =502;

const CP_ISUP_SERVICE_OCTET                   =601;

const CP_ISUP_ADD_INFO_OCTET                  =602;

const CP_ISUP_DEST_NATUREOF_ADDR              =603;

const CP_ISUP_DEST_NUMBERING_PLAN             =604;

const CP_ISUP_BEARER                          =605;

const CP_ISUP_ORIG_NATUREOF_ADDR              =606;

const CP_ISUP_ORIG_NUMBERING_PLAN             =607;

const CP_ISUP_ORIG_NUMBERING_PRESENTATION     =608;

const CP_ISUP_ORIG_NUMBERING_SCREENING        =609;

const CP_ISUP_CONN_NATUREOF_ADDR              =610;

const CP_ISUP_CONN_NUMBERING_PLAN             =611;

const CP_ISUP_CONN_NUMBERING_PRESENTATION     =612;

const CP_ISUP_CONN_NUMBERING_SCREENING        =613;

const CP_ISUP_CONN_NUMBER_REQ                 =614;

const CP_ISUP_ORIG_CATEGORY                   =615;

const CP_ISUP_ORIG_NUMBER_INCOMPLETE          =616;

const CP_ISUP_DEST_SUBADDR                    =617;

const CP_ISUP_ORIG_SUBADDR                    =618;

const CP_ISUP_HILAYER                         =619;

const CP_ISUP_LOLAYER                         =620;

const CP_ISUP_PROGRESS_INDICATOR              =621;

const CP_ISUP_IN_BAND                         =622;

const CP_ISUP_NAT_INTER_CALL_IND              = 623;

const CP_ISUP_INTERWORKING_IND                = 624;

const CP_ISUP_ISDN_USERPART_IND               = 625;

const CP_ISUP_ISDN_USERPART_PREF_IND          = 626;

const CP_ISUP_ISDN_ACCESS_IND                 = 627;

const CP_ISUP_DEST_INT_NW_IND                 = 628;

const CP_ISUP_CONTINUITY_CHECK_IND            = 629;

const CP_ISUP_SATELLITE_IND                   = 630;

const CP_ISUP_CHARGE_IND                      = 631;

const CP_ISUP_BEARER_LASTMSG                  = 632;

const CP_ISUP_HILAYER_LASTMSG                 = 633;



p262

© Zentel Telecom Ltd, 2009

const CP_ISUP_LOLAYER_LASTMSG                 = 634;

const CP_ISUP_PROGRESS_LASTMSG                = 635;

const CP_ISUP_DEST_CATEGORY                   = 636;

const CP_ISUP_ADD_CALL_NUM_QUAL               = 637;

const CP_ISUP_ADD_CALL_NUM_NOAI               = 638;

const CP_ISUP_ADD_CALL_NUM_PLAN               = 639;

const CP_ISUP_ADD_CALL_NUM_PRESENT            = 640;

const CP_ISUP_ADD_CALL_NUM_SCREEN             = 641;

const CP_ISUP_ADD_CALL_NUM_INCOMP             = 642;

const CP_ISUP_ADD_CALL_NUM                    = 642;

const CP_ISUP_EXCHANGE_TYPE                   = 643;

const CP_ISUP_COLLECT_CALL                    = 644;

const CP_ISUP_ACC_IND_VALID                   = 645;

const CP_ISUP_ACC_IND_VALUE                   = 646;

const CP_ISUP_USERP_IND_VALID                 = 647;

const CP_ISUP_USERP_IND_VALUE                 = 648;

const CP_ISUP_INTERW_IND_VALID                = 649;

const CP_ISUP_INTERW_IND_VALUE                = 650;

const CP_ISUP_CONN_ADDR                       = 651;

const CP_ISUP_CAUSE_RAW                       = 652;

const CP_ISUP_CAUSE_LOC                       = 653;

const CP_ISUP_REATTEMPT                       = 654;

const CP_IPTEL_DEST_DISPLAY                   = 700;

const CP_IPTEL_ORIG_DISPLAY                   = 701;

const CP_IPTEL_CODECS                         = 702;

const CP_IPTEL_MEDIA_TDM_ENC                  = 703;

const CP_IPTEL_MEDIA_ENC_GAIN                 = 704;

const CP_IPTEL_MEDIA_DEC_GAIN                 = 705;

const CP_IPTEL_MEDIA_ECHO_CANC                = 706;

const CP_IPTEL_MEDIA_ECHO_SUPP                = 707;

const CP_IPTEL_MEDIA_ECHO_SPAN                = 708;

const CP_IPTEL_MEDIA_RTP_TOS                  = 709;

const CP_IPTEL_MEDIA_RTCP_TOS                 = 710;

const CP_IPTEL_MEDIA_DTMF_DET                 = 711;

const CP_IPTEL_VMPRXID                        = 712;

const CP_IPTEL_VMPTXID                        = 713;

const CP_IPTEL_MEDIA_CALL_TYPE                = 714;

const CP_H323_DEST_ALIAS                      = 715;

const CP_H323_ORIG_ALIAS                      = 716;

const CP_H323_H245_TUNNELING                  = 717;

const CP_H323_FASTSTART                       = 718;

const CP_H323_EARLY_H245                      = 719;

const CP_H323_DTMF                            = 710;

const CP_H323_PROGRESS_LOC                    = 711;

const CP_H323_PROGRESS_DESC                   = 712;

const CP_SIP_CONTACT_ADDR                     = 713;

const CP_SIP_ZERO_CONN_ADDR_HOLD              = 714;

const CP_SIP_DISABLE_REL_PROV                 = 715;

const CP_SIP_DISABLE_EARLY_MED                = 716;

const CP_SIP_SEND_EARLY_MED                   = 717;

const CP_SIP_USE_183                          = 718;

const CP_SIP_SEND_REL_PROV               = 719;

Returns:   This function returns 0 if successful or a negative error code.

-o-

CCclrparms
Synopsis:  

CCclrparms(port,channel,ParmType)



p263

© Zentel Telecom Ltd, 2009

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
ParmType – The parameter type to clear

Description:   This function clears all the fields from the Aculab extended structure specified by
the ParmType argument so that the non-extended version of the relevant Aculab call with be used
next time a call is made.

The ParmType can be one of the following as defined in the ACULAB.INC:

const  PARM_TYPE_OUT         =0;   # For CCmkcall()

const  PARM_TYPE_IN          =1;   # For CCenablein()

const  PARM_TYPE_ALERTING    =2;   # For CCalerting()

const  PARM_TYPE_ACCEPT      =3;   # For CCaccept()

const  PARM_TYPE_DISCON      =4;   # For CCdisconnect()/CCrelease()

const  PARM_TYPE_HOLD        =5;   # COMING SOON

const  PARM_TYPE_GETADDR     =6;   # COMING SOON

Returns: This function returns 0 upon success or a negative error code.

-o-

CCgetparm
Synopsis:  

CCgetparm(port, channel, parmId, &pVar)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
ParmID  - The ID of the parameter to get
pVar   - Pointer to a variable to hold the returned parameter value.

Description:   This function maps to the following Aculab function:

ACU_ERR call_details(DETAIL_XPARMS *detailsp);

It allows for various parameters to be obtained relating to the current call.      The ParmID is a
unique identifier that maps to one of the fields from the DETAIL_XPARMS structure or the
DETAIL_XPARMS.unique_xparms structure returned by the call_details() function call.

For example to obtain the destination_addr and originating_addr fields from DETAIL_XPARMS
structure, one would have som,ething like the following:

      var  DID:64,CLID:64;

CCgetparm(port,chan,CP_DESTINATION_ADDR,&DID);

CCgetparm(port,chan,CP_ORIGINATING_ADDR,&CLID);

The list of ParmID constants (as defined in ACULAB.INC) and their mapping to the
DETAIL_XPARMS structure is shown in the table below:

parmID Structure and Field it maps to: Field type



p264

© Zentel Telecom Ltd, 2009

CP_VALID detail_xparms.valid PT_INT

CP_STREAM detail_xparms.stream PT_INT

CP_TS detail_xparms.ts PT_INT

CP_CALLTYPE detail_xparms.calltype PT_INT

CP_SENDING_COMPLETE detail_xparms.sending_complete PT_INT

CP_DESTINATION_ADDR detail_xparms.destination_addr PT_STRING

CP_ORIGINATING_ADDR detail_xparms.originating_addr PT_STRING

CP_CONNECTED_ADDR detail_xparms.connected_addr PT_STRING

CP_FEATURE_INFORMATION detail_xparms.feature_information PT_ULONG

CP_Q931_SERVICE_OCTET detail_xparms.unique_xparms.sig_q931.service_octet PT_UCHAR

CP_Q931_ADD_INFO_OCTET detail_xparms.unique_xparms.sig_q931.add_info_octet PT_UCHAR

CP_Q931_DEST_NUMBERING_TYPE detail_xparms.unique_xparms.sig_q931.dest_numbering_type PT_UCHAR

CP_Q931_DEST_NUMBERING_PLAN detail_xparms.unique_xparms.sig_q931.dest_numbering_plan PT_UCHAR

CP_Q931_BEARER detail_xparms.unique_xparms.sig_q931.bearer.ie PT_HEXSTR

CP_Q931_BEARER_LASTMSG detail_xparms.unique_xparms.sig_q931.bearer.last_msg PT_UCHAR

CP_Q931_ORIG_NUMBERING_TYPE detail_xparms.unique_xparms.sig_q931.orig_numbering_type PT_UCHAR

CP_Q931_ORIG_NUMBERING_PLAN detail_xparms.unique_xparms.sig_q931.orig_numbering_plan PT_UCHAR

CP_Q931_ORIG_NUMBERING_PRESENTATION detail_xparms.unique_xparms.sig_q931.orig_numbering_presentation PT_UCHAR

CP_Q931_ORIG_NUMBERING_SCREENING detail_xparms.unique_xparms.sig_q931.orig_numbering_screening PT_UCHAR

CP_Q931_CONN_NUMBERING_TYPE detail_xparms.unique_xparms.sig_q931.conn_numbering_type PT_UCHAR

CP_Q931_CONN_NUMBERING_PLAN detail_xparms.unique_xparms.sig_q931.conn_numbering_plan PT_UCHAR

CP_Q931_CONN_NUMBERING_PRESENTATIO
N

detail_xparms.unique_xparms.sig_q931.conn_numbering_presentation PT_UCHAR

CP_Q931_CONN_NUMBERING_SCREENING detail_xparms.unique_xparms.sig_q931.conn_numbering_screening PT_UCHAR

CP_Q931_DEST_SUBADDR detail_xparms.unique_xparms.sig_q931.dest_subaddr PT_HEXSTR

CP_Q931_ORIG_SUBADDR detail_xparms.unique_xparms.sig_q931.orig_subaddr PT_HEXSTR

CP_Q931_HILAYER detail_xparms.unique_xparms.sig_q931.hilayer.ie PT_HEXSTR

CP_Q931_HILAYER_LASTMSG detail_xparms.unique_xparms.sig_q931.hilayer.last_msg PT_UCHAR

CP_Q931_LOLAYER detail_xparms.unique_xparms.sig_q931.lolayer.ie PT_HEXSTR

CP_Q931_LOLAYER_LASTMSG detail_xparms.unique_xparms.sig_q931.lolayer.last_msg PT_UCHAR

CP_Q931_PROGRESS_INDICATOR detail_xparms.unique_xparms.sig_q931.progress_indicator.ie PT_HEXSTR

CP_Q931_PROGRESS_LASTMSG detail_xparms.unique_xparms.sig_q931.progress_indicator.last_msg PT_UCHAR

CP_Q931_NOTIFY_INDICATOR detail_xparms.unique_xparms.sig_q931.notify_indicator.ie PT_HEXSTR

CP_Q931_NOTIFY_LASTMSG detail_xparms.unique_xparms.sig_q931.notify_indicator.last_msg PT_UCHAR

CP_Q931_KEYPAD detail_xparms.unique_xparms.sig_q931.keypad.ie PT_HEXSTR

CP_Q931_KEYPAD_LASTMSG detail_xparms.unique_xparms.sig_q931.keypad.last_msg PT_UCHAR

CP_Q931_DISPLAY detail_xparms.unique_xparms.sig_q931.display.ie PT_HEXSTR

CP_Q931_DISPLAY_LASTMSG detail_xparms.unique_xparms.sig_q931.display.last_msg PT_UCHAR

CP_Q931_SLOTMAP detail_xparms.unique_xparms.sig_q931.slotmap PT_LONG

CP_Q931_EP_USID detail_xparms.unique_xparms.sig_q931.endpoint_id.usid PT_UCHAR

CP_Q931_EP_TID detail_xparms.unique_xparms.sig_q931.endpoint_id.tid PT_UCHAR

CP_Q931_EP_INTERPRETER detail_xparms.unique_xparms.sig_q931.endpoint_id.interpreter PT_UCHAR

CP_Q931_CAUSE detail_xparms.unique_xparms.sig_q931.cause.ie PT_HEXSTR

CP_Q931_CAUSE_LASTMSG detail_xparms.unique_xparms.sig_q931.cause.last_msg PT_UCHAR

CP_Q931_ADD_ORIG_ADDR detail_xparms.unique_xparms.sig_q931.additional_orig_addr PT_HEXSTR

CP_Q931_ADD_ORIG_NUMBERING_TYPE detail_xparms.unique_xparms.sig_q931.add_orig_numbering_type PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PLAN detail_xparms.unique_xparms.sig_q931.add_orig_numbering_plan PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_PRESENT
ATION

detail_xparms.unique_xparms.sig_q931.add_orig_numbering_presentation PT_UCHAR

CP_Q931_ADD_ORIG_NUMBERING_SCREENI
NG

detail_xparms.unique_xparms.sig_q931.add_orig_numbering_screening PT_UCHAR



p265

© Zentel Telecom Ltd, 2009

CP_Q931_OMIT_CALLING_PARTY_IE detail_xparms.unique_xparms.sig_q931.omit_calling_party_ie PT_UCHAR

CP_Q931_CALL_REF detail_xparms.unique_xparms.sig_q931.call_ref_value PT_ULONG

CP_DASS_SIC1 detail_xparms.unique_xparms.sig_dass.sic1 PT_UCHAR

CP_DASS_SIC2 detail_xparms.unique_xparms.sig_dass.sic2 PT_UCHAR

CP_DPNSS_SIC1 detail_xparms.unique_xparms.sig_dpnss.sic1 PT_UCHAR

CP_DPNSS_SIC2 detail_xparms.unique_xparms.sig_dpnss.sic2 PT_UCHAR

CP_DPNSS_CLC detail_xparms.unique_xparms.sig_dpnss.clc PT_STRING

CP_CAS_CATEGORY detail_xparms.unique_xparms.sig_cas.category PT_UCHAR

CP_ISUP_SERVICE_OCTET detail_xparms.unique_xparms.sig_isup.service_octet PT_UCHAR

CP_ISUP_ADD_INFO_OCTET detail_xparms.unique_xparms.sig_isup.add_info_octet PT_UCHAR

CP_ISUP_DEST_NATUREOF_ADDR detail_xparms.unique_xparms.sig_isup.dest_natureof_addr PT_UCHAR

CP_ISUP_DEST_NUMBERING_PLAN detail_xparms.unique_xparms.sig_isup.dest_numbering_plan PT_UCHAR

CP_ISUP_BEARER detail_xparms.unique_xparms.sig_isup.bearer.ie PT_HEXSTR

CP_ISUP_BEARER_LASTMSG detail_xparms.unique_xparms.sig_isup.bearer.last_msg PT_UCHAR

CP_ISUP_ORIG_NATUREOF_ADDR detail_xparms.unique_xparms.sig_isup.orig_natureof_addr PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PLAN detail_xparms.unique_xparms.sig_isup.orig_numbering_plan PT_UCHAR

CP_ISUP_ORIG_NUMBERING_PRESENTATION detail_xparms.unique_xparms.sig_isup.orig_numbering_presentation PT_UCHAR

CP_ISUP_ORIG_NUMBERING_SCREENING detail_xparms.unique_xparms.sig_isup.orig_numbering_screening PT_UCHAR

CP_ISUP_CONN_NATUREOF_ADDR detail_xparms.unique_xparms.sig_isup.conn_natureof_addr PT_UCHAR

CP_ISUP_CONN_NUMBERING_PLAN detail_xparms.unique_xparms.sig_isup.conn_numbering_plan PT_UCHAR

CP_ISUP_CONN_NUMBERING_PRESENTATIO
N

detail_xparms.unique_xparms.sig_isup.conn_numbering_presentation PT_UCHAR

CP_ISUP_CONN_NUMBERING_SCREENING detail_xparms.unique_xparms.sig_isup.conn_numbering_screening PT_UCHAR

CP_ISUP_CONN_NUMBER_REQ detail_xparms.unique_xparms.sig_isup.conn_number_req PT_UCHAR

CP_ISUP_ORIG_CATEGORY detail_xparms.unique_xparms.sig_isup.orig_category PT_UCHAR

CP_ISUP_ORIG_NUMBER_INCOMPLETE detail_xparms.unique_xparms.sig_isup.orig_number_incomplete PT_UCHAR

CP_ISUP_DEST_SUBADDR detail_xparms.unique_xparms.sig_isup.dest_subaddr PT_HEXSTR

CP_ISUP_ORIG_SUBADDR detail_xparms.unique_xparms.sig_isup.orig_subaddr PT_HEXSTR

CP_ISUP_HILAYER detail_xparms.unique_xparms.sig_isup.hilayer.ie PT_HEXSTR

CP_ISUP_HILAYER_LASTMSG detail_xparms.unique_xparms.sig_isup.hilayer.last_msg PT_UCHAR

CP_ISUP_LOLAYER detail_xparms.unique_xparms.sig_isup.lolayer.ie PT_HEXSTR

CP_ISUP_LOLAYER_LASTMSG detail_xparms.unique_xparms.sig_isup.lolayer.last_msg PT_UCHAR

CP_ISUP_PROGRESS_INDICATOR detail_xparms.unique_xparms.sig_isup.progress_indicator.ie PT_HEXSTR

CP_ISUP_PROGRESS_LASTMSG detail_xparms.unique_xparms.sig_isup.progress_indicator.last_msg PT_UCHAR

CP_ISUP_IN_BAND detail_xparms.unique_xparms.sig_isup.in_band PT_UCHAR

CP_ISUP_NAT_INTER_CALL_IND detail_xparms.unique_xparms.sig_isup.nat_inter_call_ind PT_UCHAR

CP_ISUP_INTERWORKING_IND detail_xparms.unique_xparms.sig_isup.interworking_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_IND detail_xparms.unique_xparms.sig_isup.isdn_userpart_ind PT_UCHAR

CP_ISUP_ISDN_USERPART_PREF_IND detail_xparms.unique_xparms.sig_isup.isdn_userpart_pref_ind PT_UCHAR

CP_ISUP_ISDN_ACCESS_IND detail_xparms.unique_xparms.sig_isup.isdn_access_ind PT_UCHAR

CP_ISUP_DEST_INT_NW_IND detail_xparms.unique_xparms.sig_isup.dest_int_nw_ind PT_UCHAR

CP_ISUP_CONTINUITY_CHECK_IND detail_xparms.unique_xparms.sig_isup.continuity_check_ind PT_UCHAR

CP_ISUP_SATELLITE_IND detail_xparms.unique_xparms.sig_isup.satellite_ind PT_UCHAR

CP_ISUP_CHARGE_IND detail_xparms.unique_xparms.sig_isup.charge_ind PT_UCHAR

CP_ISUP_DEST_CATEGORY detail_xparms.unique_xparms.sig_isup.dest_category PT_UCHAR

CP_ISUP_ADD_CALL_NUM_QUAL detail_xparms.unique_xparms.sig_isup.add_calling_num_qualifier_ind PT_UCHAR

CP_ISUP_ADD_CALL_NUM_NOAI detail_xparms.unique_xparms.sig_isup.add_calling_num_natureof_addr PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PLAN detail_xparms.unique_xparms.sig_isup.add_calling_num_plan PT_UCHAR

CP_ISUP_ADD_CALL_NUM_PRESENT detail_xparms.unique_xparms.sig_isup.add_calling_num_presentation PT_UCHAR

CP_ISUP_ADD_CALL_NUM_SCREEN detail_xparms.unique_xparms.sig_isup.add_calling_num_screening PT_UCHAR



p266

© Zentel Telecom Ltd, 2009

CP_ISUP_ADD_CALL_NUM_INCOMP detail_xparms.unique_xparms.sig_isup.add_calling_num_incomplete PT_UCHAR

CP_ISUP_ADD_CALL_NUM detail_xparms.unique_xparms.sig_isup.add_calling_num PT_HEXSTR

CP_ISUP_EXCHANGE_TYPE detail_xparms.unique_xparms.sig_isup.exchange_type PT_UCHAR

CP_ISUP_COLLECT_CALL detail_xparms.unique_xparms.sig_isup.collect_call_request_ind PT_UCHAR

CP_IPTEL_DEST_DISPLAY detail_xparms.unique_xparms.sig_iptel.destination_display_name PT_STRING

CP_IPTEL_ORIG_DISPLAY detail_xparms.unique_xparms.sig_iptel.originating_display_name PT_STRING

CP_IPTEL_CODECS detail_xparms.unique_xparms.sig_iptel.codecs PT_HEXSTR

CP_IPTEL_MEDIA_TDM_ENC detail_xparms.unique_xparms.sig_iptel.media_settings.tdm_encoding PT_INT

CP_IPTEL_MEDIA_ENC_GAIN detail_xparms.unique_xparms.sig_iptel.media_settings.encode_gain PT_INT

CP_IPTEL_MEDIA_DEC_GAIN detail_xparms.unique_xparms.sig_iptel.media_settings.decode_gain PT_INT

CP_IPTEL_MEDIA_ECHO_CANC detail_xparms.unique_xparms.sig_iptel.media_settings.echo_cancellation PT_INT

CP_IPTEL_MEDIA_ECHO_SUPP detail_xparms.unique_xparms.sig_iptel.media_settings.echo_suppression PT_INT

CP_IPTEL_MEDIA_ECHO_SPAN detail_xparms.unique_xparms.sig_iptel.media_settings.echo_span PT_INT

CP_IPTEL_MEDIA_RTP_TOS detail_xparms.unique_xparms.sig_iptel.media_settings.rtp_tos PT_INT

CP_IPTEL_MEDIA_RTCP_TOS detail_xparms.unique_xparms.sig_iptel.media_settings.rtcp_tos PT_INT

CP_IPTEL_MEDIA_DTMF_DET detail_xparms.unique_xparms.sig_iptel.media_settings.dtmf_detector PT_INT

CP_IPTEL_VMPRXID detail_xparms.unique_xparms.sig_iptel.vmprxid PT_HEXSTR

CP_IPTEL_VMPTXID detail_xparms.unique_xparms.sig_iptel.vmptxid PT_HEXSTR

CP_IPTEL_MEDIA_CALL_TYPE detail_xparms.unique_xparms.sig_iptel.media_call_type PT_STRING

CP_H323_DEST_ALIAS detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.destinatio
n_alias

PT_STRING

CP_H323_ORIG_ALIAS detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.originatin
g_alias

PT_STRING

CP_H323_H245_TUNNELING detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.h245_tun
neling

PT_INT

CP_H323_FASTSTART detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.faststart PT_INT

CP_H323_EARLY_H245 detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.early_h24
5

PT_INT

CP_H323_DTMF detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.dtmf PT_STRING

CP_H323_PROGRESS_LOC detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_
location

PT_INT

CP_H323_PROGRESS_DESC detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_h323.progress_
description

PT_INT

CP_SIP_CONTACT_ADDR detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.contact_add
ress

PT_STRING

CP_SIP_ZERO_CONN_ADDR_HOLD detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.zero_conne
ction_address_hold

PT_INT

CP_SIP_DISABLE_REL_PROV detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_reli
able_provisional_response

PT_INT

CP_SIP_DISABLE_EARLY_MED detail_xparms.unique_xparms.sig_iptel.protocol_specific.sig_sip.disable_earl
y_media

PT_INT

In the previous tables the third column defines the type of value that the field will be returned as.    
     A description of each of these types is given below:

PT_CHAR Single byte signed integer (range -127 to +127)
PT_UCHAR Single byte unsigned integer (range (0 to 255)
PT_INT Two byte unsigned integer (range -32767 to +32767)
PT_UINT Two byte unsigned integer (range 0 to 65535)
PT_LONG Four byte signed integer (range -2147483647 to +2147483647)



p267

© Zentel Telecom Ltd, 2009

PT_ULONG Four byte signed integer (range 0 to 4294967295)
PT_STRING Literal string value
PT_HEXST
R

This is a special type where the data stored in the field is not one of the above types
and is instead a multi-byte non-string field with arbitrary structure.     For fields of this
type the value returned by the CCgetparm() function will be in the form of a
Hexadecimal string where each byte value is represented in the string by a two
hexadecimal characters.     See CCsetparm() for more information about HEXSTR
types.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCalerting
Synopsis:  

CCalerting(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab functions:

ACU_ERR call_incoming_ringing(int handle);
ACU_ERR xcall_incoming_ringing(INCOMING_RINGING_XPARMS *ringingp);

Used to send and alerting (or ringing) message to the network causing the caller to  hear the ring
tone.  This  function is  used after  an  incoming call  has  been detected but  before the  call  has  been
accepted. Use of the function will stop further call details, such as DDI digits, from being received.
    If  any  parameters  have  been  set  using  the  CCsetparm()  function  with  a  ParmType  of
PARM_TYPE_ALERTING then the extended version of the function will be called.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCgetcause
Synopsis:  

CCgetcause(port, channel[,std_or_raw])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[std_or_raw] – Optional parameter to define whether to return the standard (0) or raw (1)

cause value.



p268

© Zentel Telecom Ltd, 2009

Description:   This function maps to the following Aculab function:

ACU_ERR call_getcause(CAUSE_XPARMS *causep);

This function is  used to return the clearing cause when an incoming or  outgoing call  clears.  The
returned  clearing  cause  will  only  be  valid  when  the  call  state  is  either  EV_IDLE  or
EV_REMOTE_DISCONNECT.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCoverlap
Synopsis:  

CCoverlap(port, channel,dest_addr,sending_complete)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
dest_addr –  The digits to send.
sending_complete – Set to 0 if there may be more digits to follow, or 1 if all digits have been

sent.

Description:   This function maps to the following Aculab function:

ACU_ERR call_send_overlap(OVERLAP_XPARMS *overlapp);

This function may be used to send the destination address of an outgoing call one or more digits at
a time. The function may also be used any time that a valid outgoing call handle is available and
the state of the call is CS_WAIT_FOR_OUTGOING.

The dest_addr holds the digits to send (one of more) of the destination address.

The sending_complete should be set to 1 when all digits of the destination address have been sent.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCgetcharge
Synopsis:  

CCgetcharge(port, timeslot,&pType,&pCharge,&pMeter)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
pType - Pointer to a variable that wiull hold the charging type
pCharge - Pointer to a variable holding the returned charging information (returned as a

34byte (68 char) hexi-string)



p269

© Zentel Telecom Ltd, 2009

pMeter - Pointer to a variable holding the number of metering pulse received.

Description:   This function maps to the following Aculab function:

ACU_ERR call_get_charge(GET_CHARGE_XPARMS *chargep);

This function obtains information regarding the cost of a call. The function may be used any time
that a valid call handle is available, however, the call charge information may not be valid until the
call has cleared and the call has gone to the EV_IDLE state. The function provides for the receipt
of call charging information and/or the accumulation of meter pulses.

The pType argument is a pointer to a varibale that will hold the received charging type which will
be one of the following values (As defined in ACULAB.INC):

const CHARGE_NONE = 0;

const CHARGE_INFO = 1;

const CHARGE_METER = 2;

The meaning of these types is described below:

• CHARGE_NONE - There is no valid charging information available in either the charge or
meter fields.

• CHARGE_INFO - The information contained in the element charge is valid and may be
used.

• CHARGE_METER -The information contained within the meter element is valid and may
be used.

• CHARGE_INFO + CHARGE_METER - The information contained in both the charge and
meter elements is valid and may be used.

The  pCharge  argument  is  a  pointer  to  a  variable  that  will  contain  the  charging  information,
returned as as 34byte (68 char) hexstring.

The pMeter argument is a pointer to a variable that will hold the number of metering pulses.

Returns:  Returns 0 if successful or a negative error code

-o-

CCsetupack
Synopsis:  

CCsetupack(port, channel[,progress,Display])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[progress] – option progress indicators supplied as a hexadecimal string
[Display] - option display indicators supplied as a hexadecimal string

Description:   This function maps to the following Aculab function:

ACU_ERR call_setup_ack(SETUP_ACK_XPARMS *setup_ackp);



p270

© Zentel Telecom Ltd, 2009

This  function  may  be  used  on  an  incoming  call  to  send  a  Q.931  SETUP_ACKNOWLEDGE
message to the calling party. 

The  optional  progress  or  display  parameters  can  be  used  to  set  the  progress  indicator  or  display
fields in the Aculab sig_q931 structure.   These must be passed as hexadecimal strings where each
byte is represented by two hexadecimal string characters.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCproceed
Synopsis:  

CCproceed(port, channel[,unique_hex])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[unique_hex] – Optional: Hexidecimal string representation of the Aculab

PROCEEDING_XPARMS.unique_xparms structure.

Description:   This function maps to the following Aculab function:

ACU_ERR call_proceeding(PROCEEDING_XPARMS *proceedingp);

This function may be used on an incoming call to send a message to the calling party to indicate
that sufficient information has been obtained to proceed with the call.

If  any of  the  elements  of  the  PROCEEDING_XPARMS.unique_xparms structure  need  to  be  set
then  the  unique_hex  parameter  allows  a  hexadecimal  string  representation of  this  structure  to  be
passed.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCprogress
Synopsis:  

CCprogress(port, channel[,progress[,Display]])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
[progress] – option progress indicators supplied as a hexadecimal string
[Display] - option display indicators supplied as a hexadecimal string

Description:   This function maps to the following Aculab function:

ACU_ERR call_progress(PROGRESS_XPARMS *progressp);



p271

© Zentel Telecom Ltd, 2009

This function may be used to send call progress information to the network. This function may be
used on an incoming call in the event of interworking or to indicate that in-band information is now
available.

The  optional  progress  or  display  parameters  can  be  used  to  set  the  progress  indicator  or  display
fields in the Aculab sig_q931 structure.   These must be passed as hexadecimal strings where each
byte is represented by two hexadecimal string characters.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCgetaddr
Synopsis:  

CCgetaddr(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:

ACU_ERR call_get_originating_addr(int handle);

This function may be used to obtain the originating address of an incoming call in some Channel
Associated  Signalling  (CAS)  systems  and  ISUP  variants  where  the  application  must  explicitly
request the originating address from the network.      After calling this function the call state will
change to CS_DETAILS once the originating address is available after which a call to CCgetparm
() can be used to obtain the originating address.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCanscode
Synopsis:  

CCanscode(port, channel,code)
Arguments:

port – The logical E1/T1 port number.
channel – The channel number. 
code – The answer code to send

Description:   This function maps to the following Aculab function:

ACU_ERR call_answercode(CAUSE_XPARMS *answerp);

This function allows for an answer code to be sent during the CS_CALL_CONNECTED state
which provides information about how the call is to be handled.    This is primarily used for CAS
protocols and will be ignored for protocols where this is not relevant.



p272

© Zentel Telecom Ltd, 2009

Below are the list of supported answer codes as defined in ACULAB.INC:

const AC_NORMAL            =0; # default acceptance code
const AC_CHARGE          =100; # answer call with charging
const AC_NOCHARGE        =101; # answer call without charging
const AC_LAST_RELEASE    =102; # last party release
const AC_SPARE1          =103; # spare
const AC_SPARE2          =104; # spare

Returns: This function returns 0 upon success or a negative error code.

-o-

CCputcharge
Synopsis:  

CCputcharge(port, channel,charge[,meter])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
charge – The charging information passed as a 34byte (68 char) hexi-string
[meter] – optional parmater specifiying the number of metering pulses.

Description:   This function maps to the following Aculab function:

ACU_ERR call_put_charge(PUT_CHARGE_XPARMS *chargep);

This function may be used to send call charging information on the network and may be used any
time that a valid call handle is available and the call is in the  CS_CALL_CONNECTED state. It
should  be  noted  that  it  is  normally  only  possible  to  send  this  information  from  a  Network  end
protocol.   The function provides for sending of call charge information and/or meter pulses. The
choice  of  information  is  dependent  upon  the  type  of  signalling  system  supported  by  the  device
driver.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCnotify
Synopsis:  

CCnotify(port, channel,notify_indicator)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
notify_indicator – The notify indicator passed as a hexadecimal string.

Description:   This function maps to the following Aculab function:

ACU_ERR call_notify(NOTIFY_XPARMS *notifyp);



p273

© Zentel Telecom Ltd, 2009

This function may be used on a call to send a message to the network to indicate an appropriate call
related event during the active state of a call (such as user suspended). This function is supported in
some Q.931 protocols. This function is dependent on the signalling system and reference should be
made to the appropriate specification for the protocol.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCkeypad
Synopsis:  

CCkeypad(port, channel,keypadinfo[,display])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
keypadinfo –The keypadinfo specified as a hexadecimal string
[display] – Optional display information for Q931 procotol (As hexadecimal string) 

Description:   This function maps to the following Aculab function:

ACU_ERR call_send_keypad_info(KEYPAD_XPARMS *keypadp);

This function may be used to send keypad information during a call. This function is only
supported in Q.931 and H.323 protocols.     The keypadinfo and optional display parameter must be
passed as hexadecimal strings.

Returns: This function returns 0 upon success or a negative error code.

-o-

CChold
Synopsis:  

CChold(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:

ACU_ERR call_hold(int handle);

This function allows an incoming or outgoing call to be put on hold.    If the call is successful then
a second call handle is  returned on this  port  and channel.      In order to  distinguish between the
original call handle and the new call handle on a port and channel then a call to the CCsetparty() 
must be made.

Returns: This function returns 0 upon success or a negative error code.



p274

© Zentel Telecom Ltd, 2009

-o-

CCreconnect
Synopsis:  

CCreconnect(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:
ACU_ERR call_reconnect(int handle);

This function causes a call that is in the held state to be reconnected.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCenquiry
Synopsis:  

CCenquiry(port, channel,DID,CID,sending_complete[,cnf_parm1,cnf_parm2]....)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
DID – The destination address
CID – The originating address
[send_comp] – Optional Sending complete flag
[cnf_parm1,cnf_parm2..] – Optional cnf_parms

Description:   This function maps to the following Aculab function:

ACU_ERR call_enquiry (struct out_xparms *enquiryp);

During the process of call transfer, this function allows an application to make an enquiry call, that
is, an outgoing call to a third party.    The function is essentially the same as CCmkcall (), having
all of the same call states and events. 

The DID and CID arguments specify the destination and originating addresses respectively.     The
option  send_comp  argument  allows  the  OUT_XPARMS.sending_complete  flag  to  be  set  and
should be set to 0 for overlap sending (more digits to come) or 1 for en-bloc sending.   The default
is en-bloc sending if this aragument is not given.

The optional cnf_parms allow for the OUT_XPARMS.cnf field to be set.      If one or more of these
optional cnf_parms are specified then they are each ORed in turn with OUT_XPARMS.cnf field.   
    If  no  cnf_parms  are  specifed  then  by  default  the  IN_XPARMS.cnf  field  is  set  to
CNF_REM_DISC which stops the channel automatically returning to the idle state when a remote
end disconnect occurs (instead the CCrelease() call must be used to return the channel to CS_IDLE



p275

© Zentel Telecom Ltd, 2009

state).     

See the Aculab documentation for the call_enquiry() function for a more detailed description of
the cnf field values.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCsetparty
Synopsis:  

CCsetparty(port, channel,party)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
party – The call party (0 or 1)

Description:     After a successful call to CChold() a second call handle is assigned to the
specified port and channel.      To allow both calls to be managed then the call party  can be
specified to define which call handle to use prior to making other calls to CXACULAB.DLL
function calls.           The original call handle on the port and channel is defined as party 0 and the
call handle for the call created by the CChold() call is defined as party 1.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCtransfer
Synopsis:  

CCtransfer(Aport, Achannel,Cport,Cchannel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:

ACU_ERR call_transfer(TRANSFER_XPARMS *transferp);

This function allows a call to be transferred after an successful call to CCenquiry().     The call to 
CCenquiry() is deemed to be successful if the state of the enquiry call becomes CS_CONNECTED
or CS_OUTGOING_RINGING (for ‘blind’ transfer).

Returns: This function returns 0 upon success or a negative error code.

-o-



p276

© Zentel Telecom Ltd, 2009

CCgetxparm
Synopsis:  

CCgetxparm(port, channel, parmId, &pVar[,connectionless_flag])
Arguments:

port – The logical E1/T1 port number.
channel – The channel number. 
parmId  - The Feature detail parameter ID 
pVar – Pointer to a variable to hold the return value
[connectionless_flag] – If this flag is set then the details are retrieved from the port specific

FEATURE_DETAIL_XPAMRS structure  and the channel is ignored.

Description:   This function maps to the following Aculab function:

ACU_ERR call_feature_details (FEATURE_DETAIL_XPARMS* feature_detailsp);

This function allows the retrieval of supplementary service information which may arrive at
different stages during the lifetime of a call.      After a call to CCgetparm() if the
CP_FEATURE_INFORMATION field is set then this indicates that there are some  feature details
that can be retrieved through a call to CCgetxparm().

Note that this function is also used to retrieve connectionless feature information which is retrieved
through a call to CCgetcnctless(port).    To retrieve the connectionless feature details then the
[connectionless_flag] should be set to 1 and the channel set to 0.

The list of ParmID constants (as defined in ACULAB.INC) and their mapping to the
FEATURE_DETAIL_XPARMS structure is shown in the table below:

parmID Structure and Field it maps to: Field type
FP_MSG_CONTROL get_feature_parm.message_control PT_INT

FP_UUI_COMMAND get_feature_parm.feature.uui.command PT_INT

FP_UUI_REQUEST get_feature_parm.feature.uui.request PT_UINT

FP_UUI_TX_RESPONSE get_feature_parm.feature.uui.tx_response PT_INT

FP_UUI_RX_RESPONSE get_feature_parm.feature.uui.rx_response PT_INT

FP_UUI_CONTROL get_feature_parm.feature.uui.control PT_CHAR

FP_UUI_FLOW_CONTROL get_feature_parm.feature.uui.flow_control PT_CHAR

FP_UUI_PROTOCOL get_feature_parm.feature.uui.protocol PT_UCHAR

FP_UUI_MORE get_feature_parm.feature.uui.more PT_CHAR

FP_UUI_LENGTH get_feature_parm.feature.uui.length PT_UCHAR

FP_UUI_DATA get_feature_parm.feature.uui.data PT_STRING

FP_FAC_COMMAND get_feature_parm.feature.facility.command PT_INT

FP_FAC_CONTROL get_feature_parm.feature.facility.control PT_UCHAR

FP_FAC_LENGTH get_feature_parm.feature.facility.length PT_UCHAR

FP_FAC_DATA get_feature_parm.feature.facility.data PT_STRING

FP_FAC_DESTINATION_ADDR get_feature_parm.feature.facility.destination_addr PT_STRING

FP_FAC_ORIGINATING_ADDR get_feature_parm.feature.facility.originating_addr PT_STRING

FP_FAC_DEST_SUBADDR get_feature_parm.feature.facility.dest_subaddr PT_STRING

FP_FAC_DEST_NUMBERING_TYPE get_feature_parm.feature.facility.dest_numbering_type PT_UCHAR

FP_FAC_DEST_NUMBERING_PLAN get_feature_parm.feature.facility.dest_numbering_plan PT_UCHAR



p277

© Zentel Telecom Ltd, 2009

FP_FAC_ORIG_NUMBERING_TYPE get_feature_parm.feature.facility.orig_numbering_type PT_UCHAR

FP_FAC_ORIG_NUMBERING_PLAN get_feature_parm.feature.facility.orig_numbering_plan PT_UCHAR

FP_FAC_ORIG_NUMBERING_PRESENTATION get_feature_parm.feature.facility.orig_numbering_presentation PT_UCHAR

FP_FAC_ORIG_NUMBERING_SCREENING get_feature_parm.feature.facility.orig_numbering_screening PT_UCHAR

FP_FAC_MORE get_feature_parm.feature.facility.more PT_UCHAR

FP_DIV_DIVERTING_REASON get_feature_parm.feature.diversion.diverting_reason PT_UCHAR

FP_DIV_DIVERTING_COUNTER get_feature_parm.feature.diversion.diverting_counter PT_UCHAR

FP_DIV_DIVERTING_TO_ADDR get_feature_parm.feature.diversion.diverting_to_addr PT_STRING

FP_DIV_DIVERTING_FROM_ADDR get_feature_parm.feature.diversion.diverting_from_addr PT_STRING

FP_DIV_ORIGINAL_CALLED_ADDR get_feature_parm.feature.diversion.original_called_addr PT_STRING

FP_DIV_DIVERTING_FROM_TYPE get_feature_parm.feature.diversion.diverting_from_type PT_UCHAR

FP_DIV_DIVERTING_FROM_PLAN get_feature_parm.feature.diversion.diverting_from_plan PT_UCHAR

FP_DIV_DIVERTING_FROM_PRESENTATION get_feature_parm.feature.diversion.diverting_from_presentation PT_UCHAR

FP_DIV_DIVERTING_FROM_SCREENING get_feature_parm.feature.diversion.diverting_from_screening PT_UCHAR

FP_DIV_DIVERTING_INDICATOR get_feature_parm.feature.diversion.diverting_indicator PT_UCHAR

FP_DIV_ORIGINAL_DIVERTING_REASON get_feature_parm.feature.diversion.original_diverting_reason PT_UCHAR

FP_DIV_DIVERTING_TO_TYPE get_feature_parm.feature.diversion.diverting_to_type PT_UCHAR

FP_DIV_DIVERTING_TO_PLAN get_feature_parm.feature.diversion.diverting_to_plan PT_UCHAR

FP_DIV_DIVERTING_TO_INT_NW_INDICATOR get_feature_parm.feature.diversion.diverting_to_int_nw_indicator PT_UCHAR

FP_DIV_ORIGINAL_CALLED_TYPE get_feature_parm.feature.diversion.original_called_type PT_UCHAR

FP_DIV_ORIGINAL_CALLED_PLAN get_feature_parm.feature.diversion.original_called_plan PT_UCHAR

FP_DIV_ORIGINAL_CALLED_PRESENTATION get_feature_parm.feature.diversion.original_called_presentation PT_UCHAR

FP_DIV_OPERATION get_feature_parm.feature.diversion.operation PT_INT

FP_DIV_OPERATION_TYPE get_feature_parm.feature.diversion.operation_type PT_INT

FP_DIV_ERROR get_feature_parm.feature.diversion.error PT_INT

FP_HOLD_COMMAND get_feature_parm.feature.hold.command PT_INT

FP_HOLD_CAUSE get_feature_parm.feature.hold.cause PT_INT

FP_HOLD_Q931_TS get_feature_parm.feature.hold.unique_xparms.sig_q931.ts PT_INT

FP_HOLD_Q931_RAW get_feature_parm.feature.hold.unique_xparms.sig_q931.raw PT_INT

FP_HOLD_Q931_DISPLAY get_feature_parm.feature.hold.unique_xparms.sig_q931.display PT_HEXSTR

FP_XFER_CONTROL get_feature_parm.feature.transfer.control PT_CHAR

FP_XFER_Q931_OPERATION get_feature_parm.feature.transfer.unique_xparms.sig_q931.operation PT_INT

FP_XFER_Q931_OPERATION_TYPE get_feature_parm.feature.transfer.unique_xparms.sig_q931.operation_type PT_INT

FP_XFER_Q931_ERROR get_feature_parm.feature.transfer.unique_xparms.sig_q931.error PT_INT

FP_XFER_Q931_ETS_LINKID get_feature_parm.feature.transfer.unique_xparms.sig_q931.specific.ets.LinkID PT_INT

FP_NSTD_ID_TYPE get_feature_parm.feature.non_standard.id_type PT_INT

FP_NSTD_LENGTH get_feature_parm.feature.non_standard.length PT_INT

FP_NSTD_DATA get_feature_parm.feature.non_standard.data PT_STRING

FP_NSTD_H221_ID_CC get_feature_parm.feature.non_standard.id.h221_id.cc PT_UINT

FP_NSTD_H221_ID_EXT get_feature_parm.feature.non_standard.id.h221_id.ext PT_UINT

FP_NSTD_H221_ID_CODE get_feature_parm.feature.non_standard.id.h221_id.code PT_UINT

FP_NSTD_OBJECT_ID_LENGTH get_feature_parm.feature.non_standard.id.object_id.length PT_INT

FP_NSTD_OBJECT_ID_ID get_feature_parm.feature.non_standard.id.object_id.id PT_STRING

FP_RAW_LENGTH get_feature_parm.feature.raw_data.length PT_INT

FP_RAW_DATA get_feature_parm.feature.raw_data.data PT_STRING

FP_RAW_MORE get_feature_parm.feature.raw_data.more PT_UCHAR

Returns: This function returns 0 upon success or a negative error code.



p278

© Zentel Telecom Ltd, 2009

-o-

CCsetxparm
Synopsis:  

 CCsetxparm(port, channel, parmId, Value[,connectionless_flag])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
parmID – The Id of the parameter to set
Value -  The value to set the parameter to..
[connectionless_flag] – If this flag is set then the parameter will be set in the port specific

FEATURE_DETAIL_XPARMS structure  rather then the channel specific
FEATURE_DETAIL_XPARMS  structure.    If the connectionless_flag is set then the channel is
ignored.

Description:    This  function  allows  for  a  channel  specific  FEATURE_DETAIL_XPARMS
structure to be set (or port specific structure if connectionless_flag is set).           After setting any of
the  channel  specific  parameters  in  the  FEATURE_DETAIL_XPARMS  using  the  ccsetxparm()
function,  then  any  future  calls  to  CCmkxcall()  or  CCsendfeat()  will  use  the  channel  specific
FEATURE_DETAIL_XPARMS structure.  

If the connectionless_flag is set then the port specific copy of the FEATURE_DETAIL_XPARMS
structure will be used in any subsequent calls to CCsndcnctless() function calls. 

To  clear  any values  set  in  the  channel  or  port  specific  FEATURE_DETAIL_XPARMS structure
then use the CCclrxparms().

The  full  list  of  parameters  that  can  be  set  using  the  CCsetxparms()   function  is  described in  the
CCgetxparm() function description.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCclrxparms
Synopsis:  

CCclrxparms(port,channel[,connectionless=1])

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 
connectionless_flag – IF this is set to a non zero value then the port specific copy of the

FEATURE_DETAIL_XPARMS structure will be used instead of the channel specific copy.    

Description:   This function clears the channel or port specific (if connectionless_flag is set to 1)
FEATURE_DETAIL_XPARMS structure, setting all values to 0:



p279

© Zentel Telecom Ltd, 2009

Returns: This function returns 0 upon success or a negative error code.

-o-

CCgetcnctless
Synopsis:  

CCgetcnctless(port)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:
ACU_ERR call_get_connectionless (FEATURE_DETAIL_XPARMS* feature_detailsp);

This function allows port specific (connectionless) FACILITY messages to be retrieved.      After
calling this function then the individual fields from the FEATURE_DETAIL_XPARMS structure
can be retrived using the CCgetparm() function with the connectionless_flag set to 1.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCmkxcall
Synopsis:  

CCmkxcall(port, channel, DID, CID, sending_complete[,parm1,parm2....])
Arguments:

port – The logical E1/T1 port number.
channel – The channel number. 
DID – The destination address
CID – The originating address
[send_comp] – Optional Sending complete flag
[cnf_parm1,cnf_parm2..] – Optional cnf_parms

Description:   This function maps to the following Aculab function:

ACU_ERR call_feature_openout (FEATURE_OUT_XPARMS* feature_out);

It attempts to make an outgoing call on the specified port and channel whilst also sending feature
information from the  FEATURE_OUT_XPARMS structure as set by CCsetxparm().           

The DID and CID arguments specify the destination and originating addresses respectively.     The
option  send_comp  argument  allows  the  OUT_XPARMS.sending_complete  flag  to  be  set  and
should be set to 0 for overlap sending (more digits to come) or 1 for en-bloc sending.   The default
is en-bloc sending if this aragument is not given.

The optional cnf_parms allow for the OUT_XPARMS.cnf field to be set.      If one or more of these
optional cnf_parms are specified then they are each ORed in turn with OUT_XPARMS.cnf field.   
    If  no  cnf_parms  are  specifed  then  by  default  the  IN_XPARMS.cnf  field  is  set  to
CNF_REM_DISC which stops the channel automatically returning to the idle state when a remote



p280

© Zentel Telecom Ltd, 2009

end disconnect occurs (instead the CCrelease() call must be used to return the channel to CS_IDLE
state).     

See the Aculab documentation for the call_openout() function for a more detailed description of
the cnf field values.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCsendfeat
Synopsis:  

CCsendfeat(port, channel)

Arguments:
port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function maps to the following Aculab function:

ACU_ERR call_feature_send(FEATURE_DETAIL_XPARMS* feature_detailsp);

It allows for feature information to be transmitted during the lifetime of a call on a particular port
and channel.       Use CCsetxparm() to set the specific fields of the FEATURE_DETAIL_XPARM
structure prior to calling this function.

Returns: This function returns 0 upon success or a negative error code.

-o-

CCsndcnctless
Synopsis:  

CCsndcnctless(port)

Arguments:
port – The logical E1/T1 port number.

Description:   This function maps to the following Aculab function:

ACU_ERR  call_send_connectionless(FEATURE_DETAIL_XPARMS* feature_detailsp);

It allows FACILITY messages to be sent to the network that are not specific to a particular call on a
particular  channel.        Prior  to  calling  this  function  the  specific  fields  of  the  port  specific
FEATURE_DETAIL_XPARMS  structure  should  be  set  with  calls  to  CCsetxparm()  with  the
connectionless_flag set to 1.
 
Returns: This function returns 0 upon success or a negative error code.

-o-



p281

© Zentel Telecom Ltd, 2009

CCstrtohex
Synopsis:

hexstr=CCstrtohex(string);

Arguments:
string - The string to convert to a hexadecimal string

Description:  This function converts the string argument into the corresponding hexadecimal
string.    Each character of the string will be converted to exactly two hexadecimal characters in the
returned string.      This function is useful in the CCsetparm() function where a hexadecimal string
is required for a parameter value.

Examples:

           // This will return hex_str="343432303832323232"

hex_str=CCstrtohex("442082222");

// This will return hex_str="010fffde"

hex_str=CCstrtohex("̀ 01̀ 0f̀ ff̀ de");

-o-

CCinttohex
Synopsis:

hexstr=CCinttohex(unsigned_val,num_bytes);

Arguments:
int_val - The integer value to convert to a hexadecimal string
num_bytes - Set to 1, 2 or 4 for byte, short integer or long integer value

Description:  This function converts the integer value int_val argument into the corresponding
hexadecimal string.       The num_bytes argument defines whether the integer should be treated as a
1 byte (char), 2 byte (short) or 4 byte (long) integer and will thus be converted into a 2,4 or 8
character hexidecimal string respectively.

Each byte of the integer will be converted to exactly two hexadecimal characters in the returned
string in little endian byte order (i.e byte order will be low to high).      This function is useful in
the CCsetparm() function where a hexadecimal string is required for a parameter value.

Examples:

      // This will return hex_str="ff"

hex_str=CCinttohex(255,1);

      // This will return hex_str="ff00"

hex_str=CCinttohex(255,2);

      // This will return hex_str="ff000000"

hex_str=CCinttohex(255,4);



p282

© Zentel Telecom Ltd, 2009

      // This will return hex_str="80000000"

hex_str=CCinttohex(-128,4);

Returns:  Returns the hexidecimal string representation of the given integer

-o-

CCunstohex
Synopsis:

hexstr=CCunstohex(int_val,num_bytes);

Arguments:
unsigned_val - The unsigned integer value to convert to a hexadecimal string
num_bytes - Set to 1, 2 or 4 for byte, short integer or long integer value

Description:  This function converts the unsigned integer value unsigned_val argument into the
corresponding hexadecimal string.       The num_bytes argument defines whether the integer should
be treated as a 1 byte (char), 2 byte (short) or 4 byte (long) integer and will thus be converted into a
2,4 or 8 character hexidecimal string respectively.        Note that if a negative number is passed to
the function then this will be converted to an unsigned integer first which will result in an interger
overflow.

Each byte of the integer will be converted to exactly two hexadecimal characters in the returned
string in little endian byte order (i.e byte order will be low to high).      This function is useful in
the CCsetparm() function where a hexadecimal string is required for a parameter value.

Examples:

      // This will return hex_str="ff"

hex_str=CCunstohex(255,1);

      // This will return hex_str="ff00"

hex_str=CCunstohex(255,2);

      // This will return hex_str="ff000000"

hex_str=CCunstohex(255,4);

      // This will return hex_str="ffffffff" since a -ve integer will overflow when converted to unsigned

hex_str=CCunstohex(-1,4);

Returns:  Returns the hexidecimal string representation of the given unsigned integer

-o-

SWmode

-o-



p283

© Zentel Telecom Ltd, 2009

SWquery

-o-

SWset

-o-

CCcreateTDM
Synopsis:

tdm_chan=CCcreateTDM(port,chan)
Arguments:

port – The logical E1/T1 port number.
channel – The channel number. 

Description:   This function creates a TDM endpoint for the port  and channel specified by the port
and chan arguments.    The port and chan  must reside on a board the supports TDM end-points
(e.g Prosody X) and upon success it returns a TDM channel handle which should be used in all
future function calls that reference this TDM end-point.        The internal Prosody stream and time
slot and module id are obtained from the internal data associated with the port and chan and are
used when creating the TDM endpoint.

The function creates tdmprx and tdmtx end-points to allow RTP data to be transmitted to and
received from a data feed and transmittted onto the internal TDM stream and timeslot.      This
function maps to the Aculab  sm_tdmrx_create() and sm_tdmtx_create() functions.

To create a TDM endpoint for an VOX channel you should use the SMcreateTDM(vox_chan)
function.

Once created then the functions  SMtraceTDM() and SMdestroyTDM() can be used to trace and
release the created TDM channel (i.e there is no CCtraceTDM() or CCdestroyTDM() as these
would be identical to the above functions).

Returns:   Upon success this function returns a TDM channel handle, otherwise it returns a
negative error code..

-o-

Aculab Prosody Card Library

Introduction
There are two Telecom Engine libraries that provide access to the functionality of the Aculab API. 
   CXACULAB.DLL provides the call control and switching capabilities and the CXACUDSP.DLL



p284

© Zentel Telecom Ltd, 2009

provides the functionality for the Prosody speech and digital signal processing capabilities.

This section describes the speech and digital signal processing library (CXACUDSP.DLL).

-o-

Some Simple Examples
Probably the best way to show the basic library functions and the library calling conventions is to
provide a simple example.       The example below simply waits for an incoming call on the first
channel of the first E1 port,  then plays a message and receives some DTMF.            It is assumed
that the reader is familiar with the Telecom Engine standard library set and the Aculab Call Control
library (CXACULAB.DLL).

$include "aculab.inc"

 

int port, chan, vox_chan, x, event;

var filename:64;

var tone:1;

 

main

    port=0

    chan=1;

    vox_chan=1;

    filename="hello.vox";

 

    // Make full duplex H.100 bus routing between voice channel and network port/channel

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan, CCgetslot(port, chan));

 

    // Enable inbound calls on this port/channel

    CCenablein(port,chan);

    

    // loop waiting for incoming call

    while(1)

          x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

          if(x > 0 and event eq CS_INCOMING_CALL_DETECTED)

               break;

          endif

    endwhile

    // Cause jump to onsignal if remote disconnect is received

    CCuse(port,chan); 

    // Answer the call

    CCaccept(port,chan);

 

    // Play a vox file to caller

    SMplay(vox_chan,filename);

    // Wait for some digits.. parmaters are:

    //SMwaittones(voice_chan,max_tones,first_delay10ths,inter_delay10ths) ,term_digits,&num_digits]
    SMwaittones(vox_chan,1,40,40);

    // Get any received digits

    tone=Smgettones(vox_chan);

    if(tone strneq "")

        // make the file name up from the tone received

        filename="PROMPT" & tone & ".vox";

        SMplay(vox_chan,filename);

    endif

     

    // Cause jump top onsignal

    task_hangup(task_getpid());

endmain

onsignal

   



p285

© Zentel Telecom Ltd, 2009

    // Hangup the call 

    CCdisconnect(port,chan,CAUSE_NORMAL);

 

    // Wait for state to return to IDLE the release call

    while(1)

       x=CCwait(port,chan,CC_WAIT_FOREVER,&event);

       if(x eq CS_IDLE)

             break;

       endif

    endwhile

 

    // release the call

    CCrelease(port,chan);

    

    // restart the application to wait for another call..   

    restart;

 

endonsignal

The  program  should  be  fairly  self  explanatory  but  I  will  describe  the  key  parts  of  the  program
below. 

The “aculab.inc” file is provided with the library and defines all the constants that are used with the
library  such  as  CC_WAIT_FOREVER,  CAUSE_NORMAL,
CS_INCOMING_CALL_DETECTED etc.        These are  be  described in  more detail  in  the  call
control library function library reference (CXACULAB).   

The first call:  CClisten() simply makes the receiving stream/channel of the call control channel ‘
Listen’ to the transmit stream/channel of the Voice channel, so that anything that is output by the
voice channel will be heard by the caller.        

The  second  call:    SMlisten()  makes  the  receiving  stream/channel  voice  channel  ‘listen’  to  the
transmit  stream/channel  of  the  Call  control  channel,  so  that  any  DTMF  digits  or  other  audio
transmitted by the caller will be heard by the voice channel.    

As mentioned above all this is done by switching from and to the extern H.100 or SCBUS.

The CCenablein(port,channel)  allows inbound calls  to  be  received on the  channel,   and then the
application goes into a loop waiting for calls. 

The CCwait(port,channel,timeout_100ms,&event) function call will wait for the specified timeout
(in 10ths of a second) for an event.    If the timeout is defined as -1 (CC_WAIT_FOREVER) then
the call will not return until an event is found or it is aborted by a CCabort() call.       Really the
only  event  that  should  be  received  here  is  CS_INCOMING_CALL_DETECTED  but  we  do  a
specific check for it anyway in case the channel was in a unknown state when the program started
(probably some error handling should be carried out if we found an unexpected event).

Once  a  CS_INCOMING_CALL_DETECTED event  has  been  received  then  the  call  is  answered
immediately with CCaccept(port,channel)  and CCuse(port,channel)  forces the program to jump
to the onsignal function if the CS_REMOTE_DISCONNECT event is received from this point on.

After this there are some calls to the Speech Module library fuctions.

First  a  voice  prompt  is  played  to  the  caller  using  the  SMplay(vox_chan,filename)  function  after
which  the  application  waits  for  some  DTMF  input  using  the  SMwaittones(vox_chan,
num_dig,first_delay10ths, inter_delay10ths) function.       



p286

© Zentel Telecom Ltd, 2009

The  SMwaitones()  function  puts  the  task  into  a  blocking  state  until  one  of  the  terminating
conditions  is  met.     The terminating condition could  be  that  the  requested  number  of  digits  has
been received (num_dig) or the timeout waiting for the first digit (first_delay10ths) was exceeded,
or the inter-digit timeout was exceeded (inter_delay10ths).            SMwaittones()  will then copy
any  digits  received  into  the  internal  digit  buffer  for  the  voice  channel.           The  next  call
SMgettones(vox_chan) returns any digits that have been copied to the internal digit buffer for the
voice channel. 

The application then checks if a tone was received and if so will use the received DTMF to make
the name of a prompt file which is then played using the SMplay() function.

The application then forces itself  to  the onsignal   function by calling task_hagup() with  it’s  own
process  id  where  the  call  is  disconnected  using  the  CCdisconnect(port,channel)  call  and  the
application goes into a loop waiting for the channel to return to the CS_IDLE state before releasing
the call with CCrelease(port,channel) and restarting the program to wait for the next call.

-o-

Simple VOIP example
The following example shows how to receive a VOIP call using Virtual Media Processing
channels.      To receive a VOIP call one needs to create a VMP channel and configure some codecs
on that VMP channel.     The VMP channel is then specified in the CCaccept() parameters when
accepting the inbound call.                The datafeeds from the VOX and VMP channels can then be
connected in full duplex to allow voice prompts to be played or recorded over the VOIP call..

$include "aculab.inc"

main

    int port,chan,vmp_chan,vox_chan,module_id;

    int state,x,last_state;

    var DNIS:50;

    // Hard code these for this simple test..

    port=0;

    chan=1;

    vox_chan=1;

    module_id=0;

    // Create a VMP port on DSP module 0

    vmp_chan=SMcreateVMP(module_id);

    if(vmp_chan < 0)

        errlog("Could not open VMP channel: err=",vmp_chan);

        stop;

    endif

    // Set G711 ALAW codec at element 0 in array of accepted codecs.

    SMsetcodec(vmp_chan,0,G711_ALAW);

    // Create full duplex connection between the VMP and the VOX datafeeds in advance..

    SMfeedlisten(vox_chan,TYPE_VOX,vmp_chan,TYPE_VMP);

    SMfeedlisten(vmp_chan,TYPE_VMP,vox_chan,TYPE_VOX);

    // Now go wait for inbound IP call..



p287

© Zentel Telecom Ltd, 2009

    CCenablein(port,chan);

    CCuse(port,chan);     // cause jump to onsignal on disconnect

    

    last_state=-1;    

    while(1)

         // wait forever for a change in state

         x=CCwait(port,chan,WAIT_FOREVER,&state,last_state);

         last_state=state;

         if(state eq CS_INCOMING_CALL_DET)

             CCalerting(port,chan);   // Send INCOMING RINGING.

             CCgetparm(port,chan,CP_DESTINATION_ADDR,&DNIS); 

             applog("INCOMING CALL: DNIS=" & DNIS);

         else if(state eq CS_WAIT_FOR_ACCEPT)

             // We must set the VMP channel in the accept parameters for VOIP

             CCclrparms(port,chan,PARM_TYPE_ACCEPT); 

             CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan); 

             CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan); 

             CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

             CCaccept(port,chan);

             break;

         endif endif

    endwhile

    //Now loop playing file /recording file/playing recording/getting DTMF... 

    //only hangup signal will interrupt this..

    while(1)

         SMplay(vox_line,"demo.vox");

         x=SMplaytone(vox_line,19,100);    // play a short beep

         SMrecord(vox_line,"test.vox",10,5);     // Record a short message

         SMplay(vox_line,"test.vox");         // playback the recording

         SMwaittones(vox_line,4,50,50);     // wait for some DTMF

         input=SMgettones(vox_line);          // Retrieve the digits..

         applog("Got input=",input);             // display the digits..

    endwhile

endmain

onsignal

    applog("We are in ONSIGNAL!!!! Hangup signal was received..");

    CCdisconnect(port,chan,LC_NORMAL);

    # Now go wait for call to go idle

    if(last_state <> CS_IDLE)

       while(1)

   # wait for idle

   applog("In onsig CCwaiting for CS_IDLE");

   x=CCwait(port,chan,10,&state,last_state);

   applog("CCwait returned x=",x," state=",state);

           if(state eq 0)

      applog("port=" & port & " chan=" & chan & " Incoming went to IDLE");

      break;

   endif

   sleep(1);

       endwhile

    endif

    CCrelease(port,chan);

    // Restart the program to receive another call..

    restart;

endonsignal

-o-



p288

© Zentel Telecom Ltd, 2009

Board Opening Order
Upon  start-up  the  CXACUDSP.DLL library  opens  and  initialises  the  Aculab  call  control  boards
ready  to  make  and  receive  calls.        The  order  that  the  boards  are  opened  is  specified  by  a
configuration file  called  ACUCFG.CFG whose  path  can  be  defined  by  the  environment  variable
called ACUCFGDIR.       If the ACUCFGDIR environment variable is not set then the library will
look in the current directory for the ACUCFG.CFG.

If the ACUCFG.CFG file is not found then the boards are opened in the order that they are found in
the  Aculab  Configuration  Tool  (ACT),  and  which  is  the  order  returned  by  the
acu_get_system_snapshot() function.    

The format of ACUCFG.CFG file is described here.

The  order  that  the  Prosody  speech  boards  are  opened  is  important  since  it  defines  the  logical
channel  number  that  is  used  in  many  of  the  calls  to  the  CXACUDSP.DLL functions.      Voice
channels are numbered starting from 1 up to the maximum number of voice channels in the system.
           For example in the following ACUCFG.CFG there are two modules each with 150 channels.
    These will be assigned voice channel numbers 1 through to 300:

# One Prosody X card with 4 E1 ports and 2 DSP modules

board=189747

ports=0,1,2,3

modules=0:150,1:150

Note:   If   the  number  of  voice  channels  is  not  specified  in  the  ACUCFG.CFG  file,  or  no
ACUCFG.CFG file  exists  then  the  current  version  of  the  library  will  assume  that  there  are  150
voice channels for every DSP fitted onto a Prosody X speech card and 60 voice channels for every
DSP fitted onto the old Prosody cards.

-o-

Nailing transmit timeslots to H.100 or SCBUS
Once  the  boards  are  opened  then  the  board  capabilities  are  examined  and  any  boards  that  have
switching capabilities will have their transmit channels ‘nailed’ to the external H.100 or SCBUS.   
    This provides a consistent method for switching between channels and in the current version of
the  library  even  channels  on  the  same  board  will  be  switched  through  the  external  H.100  or
SCBUS.             

H.100 channels are defined by both a stream number and a channel number where each stream can
have up to 128 timeslots.       For the SCBUS there is only one stream and the timeslots range from
0 up to 4096.                 To create a consistent way of referencing these channels whether the
external  bus  is  a  H.100  bus  or  an  SCBUS  the  CXACUDSP.DLL  generates  a  stream/timeslot  
handle which is calculated from the stream and the timeslot as follows:

handle = stream * 4096 + timeslot

For  the  SCbus  the  stream  is  always  24  which  is  the  internal  fixed  stream  that  is  used  by  the
ACULAB firmware when SCBUS is present.



p289

© Zentel Telecom Ltd, 2009

This handle is used/returned by the switching functions listed below.

handle=SMgetslot(port,channel);
x= SMlisten(channel,handle);
x= SMunlisten(channel);

By default the first channel on the first logical port will be ‘nailed’ to stream 8, timeslot 0 of the
H.100 bus (or just timeslot 512 of the SCBUS).        If there is other non-Aculab hardware in the
system that  is  using  these  stream/timeslot  ranges,  or  there  is  some  other  reason  why  a  different
stream/timeslot range should be used for nailing the transmit timeslots to the external bus then the
environment variable PROSODY_TSOFFS can be set to define the start stream and timeslot offset
to nail to.

This variable should be specified in the same form as defined above for the stream/timeslot handle.
   For example if you want to start nailing the call control channel starting at stream 64, channel 0
then you would set the environment variable as follows:

REM set offset to:   64 * 4096 + 0
SET PROSODY_TSOFFS=262144

or for the SCBUS where the stream is hardcoded to 24, if for example you wanted to start ‘nailing’
the voice channels from SCbus timeslot 1024 the you would have:

REM set offset to:   24 * 4096 + 1024
SET PROSODY_TSOFFS=99328

N.B.  The current version of the library does yet transparently support multi-chassis switching for
Prosody-X  functionality  (although  the  programmer  has  access  to  the  RTS  functions  and  can
therefore  implement  their  own  multi-chassis  switching  capability).        The  next  version  of  the
library will include a transparent method for multi-chassis switching consistent with above function
calls and methodology.

-o-

Indexed Prompt Files (IPFs)
Indexed prompt files (IPF) are single files that contain a number of different voice prompts.    The
top of the files contains an index giving byte offset and length of each prompt in the file.       The
purpose  of  index  prompt  files  is  to  provide  a  more  efficient  way of  building  up  voice  messages
from multiple prompts and is used primarily for speaking dates, times, numbers etc.           Since
the index prompt file is a single file then it only needs to be opened one at startup,  thereafter it can
be referred to by an Ipf_id number in the SMword(), SMplayph() and SMplaypr() functions.            

The list of IPF files to open at startup is found in a file called PR.PAR which is created from a text
file called PR.DEF which is converted to the PR.PAR file using the MKPR.EXE utlity.       The
PR.DEF has the following format:

<IPF_Id> <IPF filename>



p290

© Zentel Telecom Ltd, 2009

The <IPF_Id> defines the Index Prompt File ID number and must range from 1 upwards.       For
example the following is a valid PR.DEF file

1 ENGLISH.IPF

2 ARABIC.IPF

3 JAPANESE.IPF

4 MANDARIN.IPF

5 CANTONESE.IPF

The above file defines five Indexed prompt files and the IPF_Id for each.  Presumably the above
PR.DEF defines  IPF files  that  hold  the  prompts  needed to  make  up  dates,  times,  numbers  etc  in
various languages.        To turn this in to the PR.PAR file then the utility MKPR.EXE should be
run from the command line in the directory where the PR.DEF file exists.

Upon startup the  CXACUDSP.DLL library will  use  the  PRDIR environment variable to  find the
path of the PR.PAR file (or will look in the current directory if PRDIR is not set), and if it exists it
will open the IPF files listed.        If any of the IPF files listed in the PR.PAR file do not exist then
the CXACUDSP.DLL will cause the Telecom Engine to quit with an error message.

-o-

Teminating Events
Many of the speech functions such as SMplay() and SMrecord() will cause the calling task to block
until the function completes with a terminating event (unless SMmode() is called to allow
non-blocking functionality).        

The list of blocking functions for which terminating events apply are listed below:

SMplay(vox_chan,filename[,mode,sample_rate])
SMplayh(vox_chan,filehandle[bytes,mode,sample_rate])
SMrecord(vox_chan,filename,[seconds,silence,mode,sample_rate,beep])
SMwaittones(vox_chan,max_tones,first_delay10ths,inter_delay10ths[,term_digits,&num_digits])
SMplaytone(vox_chan,toneid,duration_ms)
SMplaydigits(vox_chan,digit_str,[inter_delay_ms,dig_dur_ms])
SMplaycptone(vox_chan,duration_ms,type,tone_id1,on_cad1,off_cad1[,tone_id2,on_cad2,off_cad
2.....])
SMgetrecognised(vox_chan,timeout,&type,&param0,&param1)
SMplayph(vox_chan[,slot, dataformat, samplerate])
SMplaypr(vox_chan,slot, prompt_no [,dataformat, samplerate])

There are a number of different reasons why a function might terminate such as reaching the end of
the file or a DTMF digit being received etc.      The full list of possible terminating events for all
blocking speech functions are shown below (as defined in ACULAB.INC):

# Terminating events
const TERM_ERROR       = -1;
const TERM_TONE        = 1;
const TERM_MAXDTMF     = 2;
const TERM_TIMEOUT     = 3;
const TERM_INTERDELAY  = 4;
const TERM_SILENCE     = 5;
const TERM_ABORT       = 6;
const TERM_EODATA      = 7;
const TERM_PLAYTONE    = 8;



p291

© Zentel Telecom Ltd, 2009

const TERM_PLAYDIGITS  = 9;
const TERM_PLAYCPTONE  = 10;
const TERM_RECOG       = 11;

The following table gives a description of each of these terminating events and the function for
which they apply:

Event Name Description Applies to functions
TERM_ERROR An error of some kind was

encountered
ALL

TERM_TONE The function was terminated
by a DTMF digit

SMplay(); SMplayh();
SMplayph(); SMplaypr();
SMrecord(); SMwaittones();
SMplaytone();
SMplaycptone()

TERM_MAXDTM
F

The total number of DTMF
digits requested has been
received

SMwaittones()

TERM_TIMEOUT A timeout has occurred SMwaittones();
SMwaitrecog(); SMrecord()

TERM_INTERDEL
AY 

The specified inter-digit delay
timeout has occurred

SMwaittones()

TERM_SILENCE The specified period of
silence has occurred

SMrecord()

TERM_ABORT The function was aborted by
SMabort()

ALL

TERM_EODATA End of file or data has been
reached.

 SMplay(); SMplayh();
SMplayph(); SMplaypr();
SMrecord()

TERM_PLAYTON
E

The specified tone has
finished playing

SMplaytone()

TERM_PLAYDIGI
TS 

All specified digits have been
played

SMplaydigits()

TERM_PLAYCPT
ONE 

The specified call progresss
tone has finished playing

SMplaycptone()

TERM_RECOG A recognition event has been
received (ASR,Grunt,CPtone
etc)

SMgetrecognised()

Note:  When called in blocking mode (the default mode for a channel),  all of the above functions
will  also  be  terminated whenever a  hangup signal  is  received that  causes a  jump to  the  onsignal
function.              However there is no specific terminating event code for this type of termination
since the return value from the function can never be retrieved when a hangup signal is received,
since the program execution will immediately jump to the onsignal routine.

In non-blocking mode (see 1.4 below),   the above functions will not automatically be terminated
by a jump to the onsignal function and must be manually aborted using the SMabort() function, or
the  application  must  manually  wait  for  the  function  to  complete  by  looping  on  the  SMstate()
function call and waiting for the state to return to 0 to indicate that the function has completed..

-o-



p292

© Zentel Telecom Ltd, 2009

Blocking and Non-Blocking Mode
All of the above functions can be called in both blocking or non-blocking mode as specified by a
call to SMmode(vox_chan,nonblocking_flag).      Under normal circumstances any call to the above
blocking functions will cause the Telecom Engine task to block until the function is interrupted by
one of the terminating events.       However it is sometimes useful to allow program execution to
continue while a SMplay() or other function continues in the background.

 In  order  to  allow  this  the  voice  channel  can  be  put  into  non-blocking  mode  using  the
SMmode(vox_chan,nonblocking_flag) function.     If the nonblocking_flag argument is set to a non
zero  value  then  any calls  to  the  above  speech  functions  will  return  immediately  whilst  the  play,
record, play tone etc proceeds in the background.         

In this case it is up to the application to ensure that the current speech function has finished before
attempting  to  call  one  of  the  other  blocking  speech  functions.      To  do  this  there  is  a  function
SMstate(vox_chan)  which  returns  the  current  function  that  running on  the  channel  at  the  present
time or 0 if there are no speech functions currently running.

NOTE: if nonblocking_flag is set to 1 then the SMmode() call will only apply to the next blocking
speech function call.   Once that function has completed then the channel mode will be set back to
blocking  mode.       If  a  non-zero  value   other  than  1  is  given  then  the  channel  will  stay  in
non-blocking mode until a call to SMmode() is made again with nonblocking_flag set to 0 to put
the channel back into non-blocking mode.

There are two constants defined in ACULAB.INC for this purpose as shown below:

const MODE_BLOCKING =0;
const MODE_NONBLOCKING_ONCEONLY=1;
const MODE_NONBLOCKNG =2;

For example, the following code extract will play some music in the background whilst a database
look-up occurs.      Once the database lookup has completed the application will  abort the music
and wait for the channel to return to idle.

// Prevent DTMF tones from interrupting playback    

SMtoneint(vox_chan,0);

       

// Play "Please wait while we look up the information"    

SMplay(vox_chan,"PLSWAIT.VOX");

// Change the mode to play in the background (non-blocking) for the next speech function only

(non-blocking_flag=1)

SMmode(vox_chan,MODE_NONBLOCKING_ONCEONLY);

// Play music in the background while information is retrieved

SMplay(vox_chan,"MUSIC.VOX");

// Do the data retrieval whilst music is playing…

data_retrieval_func();

// Abort the music

SMabort(vox_chan);

// Loop waiting for chan state to return to 0 (should only take milliseconds..)

while(SMstate(vox_chan))

;

endwhile

 //  Allow DTMF tones to interrupt SMplay() etc again..



p293

© Zentel Telecom Ltd, 2009

SMtoneint(vox_chan,1);

…

onsignal

// Check if hangup received during music playback (or other  non-blocking operation

if(SMstate(vox_chan))

SMabort(vox_chan);

// Loop waiting for chan state to return to 0 (should only take milliseconds..)

while(SMstate(vox_chan))

;

endwhile

endif

..

endonsignal

-o-

Aculab Prosody Speech Functions Quick Reference
SMgetmodules()
SMgetchannels()
SMgetcards()
SMcardinfo
(card,&pSerial,&pCard_type,&pCard_cap,&pSw_type.&pFirst_mod,&pNummods,&pStatus)
SMmodinfo(mod,&pfirst_chan,&pNumchans)
 term_code=SMplay(vox_chan,filename[,filetype,sample_rate])
SMplayh(vox_chan,filehandle[bytes,filetype,sample_rate])
SMrecord(vox_chan,filename,[seconds,silence,filetype,sample_rate,beep])
SMsetrecparm(vox_chan,parmID,value);
SMgetrecparm(vox_chan,parmID);
SMabort(vox_chan)
handle=SMgetslot(vox_chan)
SMlisten(vox_chan, ts_handle)
SMunlisten(vox_chan)
SMctlDtmf(vox_chan,on_off[,AsDigit(=1),toneset,mode])
SMctlPulse(vox_chan,on_off)
SMctlCPtone(vox_chan,on_off)
SMctlGrunt(vox_chan,on_off,latency)
SMtoneint(vox_chan,on_off,toneset)
SMwaittones
(vox_chan,max_tones,first_delay10ths,inter_delay10ths[,term_digits,&pNnum_digits])
SMgettones(vox_chan[,max_tones])
SMclrtones(vox_chan)
SMplaytone(vox_chan,toneid,duration_ms)
SMplaydigits(vox_chan,digit_str,[inter_dur_ms,dig_dur_ms])
SMplayptone
(vox_chan,duration_ms,type,tone_id1,on_cad1_ms,off_cad1_ms[,tone_id2,on_cad2_ms,off_cad2_
ms[,toneid3…]])
SMgetrecrognised(vox_chan,timeout_10ths,&pType,&pParam0,&pParam1)
SMmode(vox_chan,non_blocking)
SMtrace(vox_chan,on_off)
item_id=SMaddASRvocab(module,filename)
SMclrASRvocabs(module)



p294

© Zentel Telecom Ltd, 2009

SMsetASRchanparm(vox_chan,parmID,value[,parmID1,value1...])
SMaddASRitem(vox_chan,vocab_id,user_id) 
SMclrASRitems(vox_chan) {
SMctlASR(vox_chan,off_on_cont)
conf_id=SMconfstart(module)
SMconfjoin(conf_id,vox_chan_out[,Type(1-listen
only),[vox_chan_in,OutAgc,OutVol,InAGC,InVol])
 SMconfleave(conf_id,vox_chan_out[,vox_chan_in])
 SMconfend(conf_id)
SMdump() - Dumps various information about the state of the system
chan_state=SMstate(vox_chan) 
num_items=SMdetected(vox_chan[,type]) 
SMword(vox_chan,prompt_no[,ipf_id])
term_event=SMplayph(vox_chan [,ipf_id, dataformat, samplerate])
term_event=SMplaypr(vox_chan,ipf_id, prompt_no [,dataformat, samplerate])
SMplaystrph(vox_chan,ipf_id,str_words[,dataformat,samplerate])
SMplaystrphm(vox_chan,str_words[,dataformat,samplerate])
SMcreateVMP(module_id,[local_addr])
SMtraceVMP(vmp_chan,tracelevel)
SMdestroyVMP(vmp_chan)
SMsetcodec(vmp_chan)
SMclrcodecs(vmp_chan)
SMcreateTDM(vox_chan)
SMtraceTDM(tdm_chan)
SMdestroyTDM(tdm_chan)
SMfeedlisten(chan1_id,chan1_type,chan2_id,chan2_type)
SMfeedunlisten(chan_id,chan_type)

-o-

Aculab Prosody Speech Function Reference

SMgetmodules
Synopsis: 

SMgetmodules()

Description:    This function returns the number of Digital Signal Processing (DSP) modules in the
system.

Returns:    Returns the number of DSP modules in the system.

-o-

SMgetchannels
Synopsis:

SMgetchannels()



p295

© Zentel Telecom Ltd, 2009

Description:    This function returns the number of voice channels available in the system.

Returns:    Returns the number of voice channels in the system.

-o-

SMgetcards
Synopsis:

 SMgetcards()

Description:    This function returns the number of Prosody cards poresent in the syste,..

Returns:    Returns the number of Prosody cards in the system.

-o-

SMcardinfo
Synopsis:

SMcardinfo(card,&pSerial,&pCard_type,&pCard_cap,&pSw_type.&pFirst_mod,&pNummods,&p
Status)
Arguments:

card – The card number for which to retrieve information (starting from 0)
pSerial – Pointer to variable that will hold the returned serial number
pCard_type – Pointer to variable that will hold the cards type
pCard_cap  - Pointer to a variable that will hold the card capabilities
pSw_type – Pointer to variable that will hold the switching bus type
pFirst_mod – Pointer to a variable that will hold the first DSP module offset on the board
pNummods – Pointer to a variable that will hold the number of DSP modules on the board
pStatus – Pointer to a variable that will hold the board status

Description: This function returns information about the specified card.    The card number ranges
from 0 to one less than the total number of Prosody cards in the system.      The remaining
arguments are pointer to variables that will hold the returned card information values.  

The pCard_type will hold the card type which will be one of the following types as defined in the
ACULAB.INC file:

# types of card 
const ACU_PROSODY_PCI_CARD = 0x10;
const ACU_E1_T1_PCI_CARD = 0x12;
const ACU_VOIP_PCI_CARD = 0x14;
const ACU_IP_TELEPHONY_PCI_CARD = 0x14;
const ACU_PROSODY_CPCI_CARD = 0x20;
const ACU_E1_T1_CPCI_CARD = 0x21;
const ACU_PROSODY_S_CARD = 0x22;
const ACU_E1_T1_CPCI_PMX_CARRIER_CARD = 0x23;
const ACU_PROSODY_X_CARD = 0x24;

The pCard_cap will hold the card capabilities which will be one or more of the following values



p296

© Zentel Telecom Ltd, 2009

Or'ed together:

# functionality available on card 
const ACU_RESOURCE_CALL = 1;
const ACU_RESOURCE_SWITCH = 2;
const ACU_RESOURCE_SPEECH = 4;
const ACU_RESOURCE_IP_TELEPHONY = 8;
const ACU_RESOURCE_ODPR = 16;
const ACU_RESOURCE_TRM = 32;
const ACU_RESOURCE_MG                         = 64;
const ACU_RESOURCE_STUN = 128;

The pSw_type will hold the type of switching resource on the card and will be one of the following:

# Switch types
const SWMODE_CTBUS_MVIP      =0;
const SWMODE_CTBUS_SCBUS    =1;
const SWMODE_CTBUS_H100       =2;
const SWMODE_CTBUS_PEB         =3;
const SWMODE_CTBUS_MC3        =4;

The pFirst_Mod will hold the module offset of the first DSP Module on the card.      Modules are
number 0 from the first module found on the first card and are then numbered sequentially
depending on the order that the cards are opened.

The pNummodswill hold the number of DSP modules that are on the specified card.

The pStatus holds the card status which will be 0 for inactive/disabled or 1 for active.
Returns:  Returns 0 on success or -1 if bad card number supplied

-o-

SMmodinfo
Synopsis:

 SMmodinfo(mod,&pfirst_chan,&pNumchans)

Arguments:
mod – The module number (starting from 0)
pfirst_chan – The first voice channel on the specified module
pNumchans – The number of voice channels on the module.

Description:  This function returns information about specified module.     The information
returned is the first voice channel number on the module and the total number of voice channels on
the module.

Returns:  0 upon success or -1 if an invalid module number is supplied

-o-

SMplay
Synopsis:

 term_code=SMplay(vox_chan,filename[,filetype,sample_rate])



p297

© Zentel Telecom Ltd, 2009

Arguments:
vox_chan – The logical voice channel.
filename – The filename of the voice prompt to play
[filetype] – The type of voice prompt file to play
[sample_rate] – The sample rate of the voice prompt file.

Description:  This function plays the speech file specified by filename on the given voice channel.
  If the filetype and sample_rate  are not specified then it is assumed that the file type is 
SMDataFormatOKIADPCM and the sample rate is 6000.   

Otherwise the filetype and samperate can be specifed as described below.  

 The full list of  filetypes as defined in ACULAB.INC is shown below:

# File types for SMplay() etc

const SMDataFormatNone=0;

const SMDataFormatALawPCM=30;

const SMDataFormatULawPCM =31;

const SMDataFormatOKIADPCM =32;

const SMDataFormatACUBLKPCM =33;

const SMDataFormat16bit =34;

const SMDataFormat8bit =35;

const SMDataFormatSigned8bit =36;

const SMDataFormatIMAADPCM =17;

The sample_rate is the sample rate in bits per second of the speech file.    The valid sample rates
are as follows:

8000 – The typical rate for telephone since it is the rate at which the telephone networks
themselves operate.

6000 – A rate which reduces file size at the cost of some quality
11000 – a rate convenient for use with PC soundcards.   This is sufficiently close to a quarter

of the rate used by CDs and allows almost universal compatibility with cheap PC soundcards which
can handle 11025 sampling.

Note that under normal circumstances the Telecom Engine will block the calling task until the
playback is terminated by a terminating event of some kind.     This may be the presence of a
DTMF digit in the DTMF digit buffer for the channel,    the end of the file, a call to SMabort() or
any other terminating event.

The reason for the function terminating is returned as the return value of the function and may be
one of the following values:

# Terminating events

const TERM_ERROR       = -1;

const TERM_TONE        = 1;

const TERM_ABORT       = 6;

const TERM_EODATA      = 7;

(see 1.3 Terminating events)

Also whenever a jump to the onsignal function occurs (for example caused by a hangup signal after
a call to CCuse()) and if the function is playing in blocking mode (see 1.4 Blocking and
non-blocking mode) then the SMplay() will automatically be aborted.        If playing in
non-blocking mode then it is up to the application to abort the play and/or wait for it to complete.

Returns:  Returns either an error code (E.g. if the file could not be opened) or the reason for the



p298

© Zentel Telecom Ltd, 2009

function termination.

-o-

SMplayh
Synopsis:

 SMplayh(vox_chan,filehandle[bytes,filetype,sample_rate])
Arguments:

vox_chan – The logical voice channel.
filehandle – A file handle returned from a call to sys_fhopen()
[bytes] – Number of bytes to play from the file
[filetype] – The type of voice prompt file to play
[sample_rate] – The sample rate of the voice prompt file.

Description:  This function is similar to the SMplay()function except that it takes a file handle as
returned from the sys_fhopen() function in the Telecom Engine standard system library
(CXSYS.DLL).    It is up to the application to open the file first and to ensure that the file handle is
released after use.

If the optional argument bytes is specified then the function will terminate with the event
TERM_EODATA once the specified number of bytes has been played from the file.    If bytes is
omitted or set to 0 then the function will continue playing from the file until the end of the file is
reached or another terminating event causes the function to finish.

Just as for the SMplay() function the SMplayh() will return the reason for the termination of the
function, which will be one of the following values:

# Terminating events

const TERM_ERROR       = -1;

const TERM_TONE        = 1;

const TERM_ABORT       = 6;

const TERM_EODATA      = 7;

(see 1.3 Terminating events)

If the function is playing in blocking mode then a jump to onsignal will cause the playback to be
aborted.    In non-blocking mode the playback will continue even after a jump to onsignal and it is
then up to the application to abort the playback and/or wait for it to complete.

Example:

int fh;

fh=sys_fhopen("HELLO.VOX","rs", SMDataFormatALawPCM,8000);

 if(fh < 0)

                errlog("Error opening file: err=",fh);

    task_hangup(task_getpid());

endif

// If we get here then the file is open so play it

SMplayh(vox_chan,fh,0,);

sys_fhclose(fh);

Returns:  Returns either an error code (E.g. invalid file handle) or the reason for the function



p299

© Zentel Telecom Ltd, 2009

termination.

-o-

SMrecord
Synopsis:

SMrecord(vox_chan,filename,[seconds,silence,filetype,sample_rate,beep])
Arguments:

vox_chan – The voice channel
filename -  The filename to record to
[seconds] – Optional number of seconds to record (default value is 0 (unlimited)
[silence] – Optional number of seconds of silence to end recording (default is 5 seconds)
[filetype] -  Optional file type to record to (default is SMDataFormatOKIADPCM)
[sample_rate] -  Optional sample rate (default is 6000)

Description:  This function records to the given filename on the specified vox_chan.      The
number of seconds to record can be specified as an optional argument.   If seconds is omitted or set
to 0 then the recording will continue indefinitely until one of the other terminating events is
received.         

If the filetype and sample_rate  are not specified then it is assumed that the file type is
SMDataFormatOKIADPCM and the sample rate is 6000.   

Otherwise the filetype and samperate can be specifed as described below.  

The full list of  filetypes as defined in ACULAB.INC is shown below:

# File types for SMplay() etc

const SMDataFormatNone=0;

const SMDataFormatALawPCM=30;

const SMDataFormatULawPCM =31;

const SMDataFormatOKIADPCM =32;

const SMDataFormatACUBLKPCM =33;

const SMDataFormat16bit =34;

const SMDataFormat8bit =35;

const SMDataFormatSigned8bit =36;

const SMDataFormatIMAADPCM =17;

The sample_rate is the sample rate in bits per second of the speech file.    The valid sample rates
are as follows:

8000 – The typical rate for telephone since it is the rate at which the telephone networks
themselves operate.

6000 – A rate which reduces file size at the cost of some quality
11000 – a rate convenient for use with PC soundcards.   This is sufficiently close to a quarter

of the rate used by CDs and allows almost universal compatibility with cheap PC soundcards which
can handle 11025 sampling.

Note that under normal circumstances the Telecom Engine will block the calling task until the
recording is terminated by a terminating event of some kind.     This may be the presence of a
DTMF digit in the DTMF digit buffer for the channel,    or the maximum number of seconds has
been reached or the maximum duration of silence has been detected etc



p300

© Zentel Telecom Ltd, 2009

The reason for the function terminating is returned as the return value of the function and may be
one of the following values:

# Terminating events

const TERM_ERROR       = -1;

const TERM_TONE        = 1;

const TERM_TIMEOUT     = 3;

const TERM_SILENCE     = 5;

const TERM_ABORT       = 6;

(see 1.3 Terminating events)

Also whenever a jump to the onsignal function occurs (for example caused by a hangup signal after
a call to CCuse()) and if the function is playing in blocking mode (see 1.4 Blocking and
non-blocking mode) then the SMplay() will automatically be aborted.        If playing in
non-blocking mode then it is up to the application to abort the play and/or wait for it to complete.

Returns:  Returns either an error code (E.g. if the file could not be opened) or the reason for the
function termination.

-o-

SMsetrecparm
Synopsis:

 SMsetrecparm(vox_chan,parmID,value);
Arguments:

vox_chan - The voice channel
parmID - The parameter ID to set
value – The parameter value

Description:  This function allows for certain recording parameters to be set for a particular
channel.     Each channel has it's own copy of a SM_RECORD_PARMS structure which is passed
to the Aculab sm_record_start() function and these parameters can be set prior to a call to
SMrecord() by using this function.

The list of record parameters that can be set is as follows:

ParmID Maps to field:
SM_RECPARM_AGC  SM_RECORD_PARMS.agc

SM_RECPARM_VOLUME SM_RECORD_PARMS.volume

SM_RECPARM_SILENC_ELIM SM_RECORD_PARMS.silence_eliminatio
n

SM_RECPARM_TONE_ELIM_MODE SM_RECORD_PARMS.tone_elimination_
mode

SM_RECPARM_TONE_ELIM_SET SM_RECORD_PARMS.tone_elimination_
set_id

SM_RECPARM_ALTDATASOURCE SM_RECORD_PARMS.alt_data_source

SM_RECPARM_ALTDATASOURCE_TYP
E

SM_RECORD_PARMS.alt_data_source_t
ype

The values for the parmIDs are defined in the ACULAB.INC file are are shown below:



p301

© Zentel Telecom Ltd, 2009

const SM_RECPARM_AGC                  =1;

const SM_RECPARM_VOLUME               =2;

const SM_RECPARM_SILENC_ELIM          =3;

const SM_RECPARM_TONE_ELIM_MODE       =4;

const SM_RECPARM_TONE_ELIM_SET        =5;

const SM_RECPARM_ALTDATASOURCE       =6;

const SM_RECPARM_ALTDATASOURCE_TYPE  =7;

Below is a description of these parameters:

SM_RECPARM_AGC  – This is an Indicator of whether automatic gain control is  to be enabled.
Set to a non zero value to enable or zero to enable.
SM_RECPARM_VOLUME – Set this to the desired adjustment to the volume (dB). The range of
gain supported is at least +8 to -22 dB
SM_RECPARM_SILENC_ELIM - The maximum duration (in mS) of silence to record. Silences
longer than this are truncated to this length. The value zero disables silence elimination.
SM_RECPARM_TONE_ELIM_MODE  –  Indicaties  what  types  of  tones  to  eliminate  from  the
recording. and can be one of these values (as defined in the ACULAB.INC file): 

SMToneDetectionNone  - Simple tones never recognised. 
SMToneDetectionNoMinDuration  - mple tone detection enabled, no minimum period. If the

correct frequencies are detected with the correct signal to noise ratio, twist, etc. for however short a
duration, the tone is considered to be present and is recognised. 

kMToneDetectionMinDuration64  -  Simple  tone  detection  enabled,  tone  must  be  valid  for
minimum period to be detected. If the tone is valid for 64mS it will definitely be detected. Tones of
shorter duration between 32mS and 64mS may be detected but cannot be guaranteed. 

SMToneDetectionMinDuration40   -  This  mode uses  a  slightly more complex algorithm for
analysing duration of a valid tone, and enables robust detection of tones with duration as short as
40mS. 

SMToneEndDetectionNoMinDuration - This mode is like SMToneDetectionNoMinDuration
but application notified when end of tone detected. 

SMToneEndDetectionMinDuration64  - This mode is like SMToneDetectionMinDuration64
but application notified when end of tone detected. 

SMToneEndDetectionMinDuration40  -  This  mode  is  like  SMToneDetectionMinDuration40
but application notified when end of tone detected. 

SMToneLenDetectionNoMinDuration  -  This  mode  is  like
SMToneEndDetectionNoMinDuration  but  returns  additional  tone  duration  information  to
application. 

SMToneLenDetectionMinDuration64  -  This  mode  is  like
SMToneEndDetectionMinDuration64  but  returns  additional  tone  duration  information  to
application. 

SMToneLenDetectionMinDuration40  -  This  mode  is  like
SMToneEndDetectionMinDuration40  but  returns  additional  tone  duration  information  to
application. 

SMToneDetectionAsListenFor  -   This  mode  is  only  valid  when  a  tone  detection  mode  is
currently  active  on  the  same  channel,  started  by  SMctlDtmf().  Any  tones  detected  on  the  same
channel as the recording will be eliminated from the recorded data.
SM_RECPARM_TONE_ELIM_SET – The tone set to use (NOT YET IMPLEMENTED)
SM_RECPARM_ALTDATASOURCE – An alternative voice channel whose input or output is to
be record (set to 0 if no alternative voice channel is specified)
SM_RECPARM_ALTDATASOURCE_TYPE - If an SM_RECPARM_ALTDATASOURCE
channel is specified, this defines which kind of data associated with that channel should be
recorded. One of these values:

SMRecordAltSourceDefault – If the channel specified for
SM_RECPARM_ALTDATASOURCE  is an input only channel, then data switched to this



p302

© Zentel Telecom Ltd, 2009

channel input will be recorded, otherwise the data being generated on this channel output will be
recorded (this feature is normally used to record conferenced outputs). SMRecordAltSourceInput -

Data switched to the alternative data source input will be recorded
SMRecordAltSourceOutput  -  Data generated on the alternative data source output will be

recorded.

Returns:  0 if successful or negative error code.

-o-

SMgetrecparm
Synopsis:

SMgetrecparm(vox_chan,parmID);

Arguments:  
vox_chan - The voice channel
parmID - The parameter ID to obtain the value of

Description: This function allows the value associate with the given record parmID to be retrieved
for a particular channel.        See CCsetparm() for a description of the parmID values and meanings

Returns:  Returns the value associated with the specified parameters ID.

-o-

SMabort
Synopsis:

SMabort(vox_chan)

Arguments:
vox_chan – The voice channel

Description:    This functions will abort a speech operation that is currently running on the given
channel.    This function works with all of the blocking type speech functions listed below:

SMplay()
SMplayh()
SMrecord()
SMwaittones()
SMplaytone()
SMplaydigits()
SMplayptone()
SMgetrecrognised()
SMplayph()
SMplaypr()

If the SMabort() function is used to interrupt any of the above functions then the terminating event
type returned by the function will be TERM_ABORT.



p303

© Zentel Telecom Ltd, 2009

Returns:  0 if successful or -1 if an invalid voice channel is specified.

-o-

SMgetslot
Synopsis:

handle=SMgetslot(vox_chan)

Arguments:
vox_chan – The voice channel

Description:    This function returns a logical handle to the external H.100 or SCBUS transmit
timeslot for the specified vox_chan.       The timeslot handle references the transmit timeslot of the
given vox_chan which has been ‘nailed’ to a H.100 or SCBUS timeslot by the library at start-up.    
      This only applies to boards that have switching capabilities and not to the PROSODY_S type
virtual boards which do not have any external switching capability.

The returned handle is actually obtained from the physical H.100 or SCBUS stream and timeslot
from the following formula:

handle = stream * 4096 + timeslot

For  the  SCbus  the  stream  is  always  24  which  is  the  internal  fixed  stream  that  is  used  by  the
ACULAB firmware when SCBUS is present.

For example, if a prosody board has two DSPs attached giving 300 channels of speech pricessing
and is fitted with a  H.100 bus, then upon startup the CXACUDSP.DLL library will automatically ‘
nail’ the transmit timeslots from the voice channels to the H.100 bus starting at stream 8, timeslot 0
(or as defined by the PROSODY_TSOFFS environment variable) .        Since each H.100 stream
can have 128 timeslots then three streams will be used by the 300 voice channels on this card.    

Voice channels 1 to 128 would be nailed to the timeslots of stream 8, voice channels 129 to 256
would be nailed to the timeslots of stream 9 and voice channels 257 to 300 would be nails to the
first 64 timeslots of stream 10 on the H.100 bus.

From the formula shown above, the handles returned by the SMgetslot() function would range from
32768 though to 32895 for first 128 voice channels,  36864 through to 36991 for channels 129 to
256 and 40960 through to 41023 for the last 64 voice channels.

The external bus handle  returned by SMgetslot() can be used in the SMlisten()  function to allow
the ‘receive’ timeslot of one channel to ‘listen’ to the ‘transmit’ timeslot from another channel via
the external H.100 or SCBUS.

For example, if there was an inbound call on E1 port 0, channel 1 then the voice channel number 1
could be connected to this network channel in a full duplex connect, via the external bus.

# Make a full duplex connection between the voice channel and the network channel
CClisten(0,1,SMgetslot(1));
SMlisten(1,CCgetslot(0,1);



p304

© Zentel Telecom Ltd, 2009

Returns:  This  function  returns  the  logical  timeslot  handle  for  the  given  vox_chan  or  a  negative
error code.

-o-

SMlisten
Synopsis:

SMlisten(vox_chan, ts_handle)
Arguments:

port – The logical E1/T1 port number.
ts_handle – The logical timeslot handle returned from SMgetslot() (or using the formula

shown in SMgetslot())
Description:   This function causes the receive timeslot of the given voice channel  to ‘listen’ to
the transmit timeslot that has been nailed to the external H.100 or SCBUS.        The ts_handle is a
logical handle that references an external H.100 or SCBUS stream/timeslot as returned by 
CCgetslot() or SMgetslot() or which can be obtained by using the formula:

handle = stream * 4096 + timeslot

Where stream and timeslot are the stream and timeslot on the external H.100 or SCBUS.      For the
SCBUS the stream is hardcoded to 24.

For example the following code makes voice channel 1 listen to the network channel on port 0,
channel 1 that any DTMF or audio from the caller will be heard by the voice channel for DTMF
detection or recording.

x=SMlisten(1,CCgetslot(0,1);

Returns: This function returns 0 upon success or a negative error code.

-o-

SMunlisten
Synopsis:

SMunlisten(vox_chan)

Arguments:
vox_chan – The voice channel

Description:   This function stops the receive timeslot of the given vox_chan from listening to any
H.100 or SCBUS transmit timeslot:

Returns: This function returns 0 upon success or a negative error code.

-o-

SMctlDtmf



p305

© Zentel Telecom Ltd, 2009

Synopsis:
SMctlDtmf(vox_chan,on_off[,AsDigit(=1),toneset,mode])

Arguments:
vox_chan – The voice channel
on_off -  Set to 0 to turn off DTMF tone detection, or 1 to turn it on.
AsDigit – Set to 0 if there is no digit mapping or 1 (default) if the digits are to be mapped to

digit codes.
toneset - The tone set ID to use (one of the internal Aculab tonesets)
mode -  The tone detection mode.

Description:  This function controls how the specified vox_chan handles the detection of DTMF
digits.      Detection of DTMF can be turned on or off by setting the on_off flag to 1 or 0
respectively.

The AsDigit argument defines whether the received DTMF will be converted to the corresponding
DTMF character (E.g. #, *, 0 etc) or whether the tone ID within the tone set will be returned
instead.     By default AsDigit is set to 1 which means convertion will take place.    Set this to 0 to
receive the tone id instead.

Returns: 0 if successful or -1 if bad vox_chan was specified.

-o-

SMctlPulse
Synopsis:

SMctlPulse(vox_chan,on_off)

Arguments:  
vox_chan:  The voice channel
on_off -  Set to 0 to turn pulse detection off (default) or 1 to turn pulse detection on

Description:  This function allows pulse detection to be switched on or off.

Returns:  Returns 0 on success or -1 if a bad vox_chan was specified.

-o-

SMctlCPtone
Synopsis:

SMctlCPtone(vox_chan,on_off)

Argument:
vox_chan –  The voice channel
on_off – set to 0 to turn call progress tone detection off (default), 1 to turn it on

Description:  This function turns on (1) or off (0) call progress tone detection that corresponds to a
member of the set of call-progress tones currently recognisable by the module.   Note that
call-progress tone detection may not be used simultaneously with tone or digit detection on the



p306

© Zentel Telecom Ltd, 2009

same channel.    

See Prosody API documentation for sm_listen_for() for the set of preloaded call progress tones.

Returns:  0 if successful or -1 if invalid voice channel speicified.

-o-

SMctlGrunt
Synopsis:

SMctlGrunt(vox_chan,on_off,latency)

Arguments:
vox_chan – The voice channel
on_off – set to 0 to turn grunt detection off, 1 to turn it on
latency-  The duration in ms required before a signal is considered to be silent

[(n.b. need min_noise_level and grunt_level to be implemented)]

Description:  This function turns on (1) or off (0) grunt detection on the given channel.      The
latency can be set to the number of milliseconds required before a signal is considered to be silent.

Returns:  Returns 0 if successful or 01 if bad vox_chan specified.

-o-

SMtoneint
Synopsis:

SMtoneint(vox_chan,on_off,toneset)

Arguments:
vox_chan – The voice channel
on_off – Set to 0 to prevent DTMF tones from interrupting speech functions, set to 1 to allow

DTMF to interrupt speech
toneset – Which of the internal Aculab tonesets to use

Description: This function specifies whether DTMF tones will interrupt blocking speech functions
such as SMplay(), SMrecord() etc.      By default any DTMF tone received will interrupt these
functions with a terminating event of TERM_TONE,  to prevent this on_off should be set to 0.

toneset can be set to one of the internal Aculab tonesets to specifiy which toneset can interrupt a
speech function.

Returns: Returns 0 if successful or -1 if bad vox_chan specified

-o-

SMwaittones



p307

© Zentel Telecom Ltd, 2009

Synopsis:

SMwaittones(vox_chan,max_tones,first_delay10ths,inter_delay10ths[,term_digits,&pNnum_digits]
)
Arguments:

vox_chan – The voice channel
max_tones – The maximum number of tones to receive
first_delay10ths – The time to wait for the first digit to be entered (in 10ths of a second)
inter_delay10ths – The maximum time between digits (in 10ths of a second)
[term_digits] – Optional argument specifying a string of DTMF digits that would terminate

the input
pNum_digits – Pointer to a variable to hold the number of digits actually received before the

function terminated

Description:    This  function  allows  the  application  to  block  waiting  for  DTMF  input  and  also
copies any DTMF digits received to the internal DTMF buffer belonging to the channel.         Each
channel maintains two buffers for collecting DTMF digits,  one background buffer which collects
all DTMF digits detected on the channel, and one foreground buffer where tones are copied after a
call to SMwaittones().         It is the foreground buffer that is returned by a call to the SMgetttones()
functions.     

Therefore the SMwaittones() and SMgetttones() functions work in conjunction with each other.   
The SMwaittones() function sets conditions for which tones to wait for and the conditions which
will cause the SMwaittones() to terminate.     After termination the SMwaittones() will  copy any
DTMF digits it received, up to and including the terminating event, to the foreground buffer.

The  max_tones  argument  specifies  the  maximum  number  of  DTMF  tones  to  receive  before
terminating  the  SMwaittones()  function  with  a  TERM_MAXDTMF  event.     Note  that  if  the
background buffer already holds the number of tones specified by max_tones then the function will
terminate  immediately  with  TERM_MAXDTMF  and  these  tones  will  be  copied  over  to  the
foreground buffer.

first_delay10ths specifies the maximum time (in 1/10ths second) that the function will wait for the
first input tone to be received.     If this timeout is exceeded then the function will terminate with a
TERM_TIMEOUT event  and no digits  will  be  copied  to  the  foreground buffer.       IF there  are
already one or more digits in the background buffer then the first_delay10ths expires immediately
and the inter_delay10ths timer is started.     If  first_delay10ths is set to 0 (or negative ) value then
the function will terminate immediately with TERM_TIMEOUT if there was not already a digit in
the background buffer.

the  inter_delay10ths  timer  is  started  after  the  first  digit  has  been  received  and  specifies  the
maximum time allowed between all successive received digits.     If the inter_delay10ths timer is
exceeded then the function will be terminated with a TERM_INTERDELAY event and the digits
received so far are copied to the foreground buffer.

The optional term_digits argument allows the input to be terminated upon receipt of one of a set of
DTMF digits specified as a string of digits.     For example if the input is to be terminated by either
a '*' or '#' digit then the term_digits string should be set to "*#".      As soon as either of these digits
is received then the function terminates with a TERM_TONE event and all the digits received so
far (including the terminating digit) are copied to the foreground buffer.

If the optional pNum_digits variable is specified then the variable that this points to will be set to



p308

© Zentel Telecom Ltd, 2009

the total number of digits copied to the foreground buffer upon termination of this function.

Examples:

// This will wait for upto 4 digits to be received with the first and inter digit delay set to 4 seconds each

x=SMwaittones(vox_chan,4,40,40);

//  Get the digits received from the foreground buffer..

tones=SMgettones(vox_chan);

// This will wait for upto 4 digits to be received unless a * or # is received, with the first and inter digit delay

set to 4 seconds each

x=SMwaittones(vox_chan,4,40,40,"*#");

//  Get the digits received from the foreground buffer..

tones=SMgettones(vox_chan);

// This will return immediately with TERM_TIMEOUT unless there is already a DTMF digit already in the

background buffer (first_delay10th set to 0)

x=SMwaittones(vox_chan,1,0,0);

//  Get the digits received from the foreground buffer..

tones=SMgettones(vox_chan);

Returns:  Returns the terminating event or a negative error code.

-o-

SMgetttones
Synopsis:

SMgettones(vox_chan[,max_tones])

Arguments:
vox_chan – The voice channel
[max_tones] – optional argument specifying the maximum number of tones to return from

the foreground buffer

Description:    This  function  works  in  conjunction  with  the  SMwaittones()  function  to  receive
DTMF input.        The SMgettones() function will return all of the digits that have been copied to
the foreground buffer by a call to SMwaittones(),  or the number of tone specified by max_tones if
this argument is specified.

Returns:  Returns the string of DTMF digits from the foreground buffer or -1 if an invalid
vox_chan  was specified.

-o-

SMclrtones
Synopsis:

SMclrtones(vox_chan)
Arguments:

vox_chan – The voice channel

Description:  This function clears both the foreground and background buffers of all received



p309

© Zentel Telecom Ltd, 2009

DTMF digits.

Returns:  Returns 0 upon success or -1 if invalid vox_chan specified

-o-

SMplaytone
Synopsis:

SMplaytone(vox_chan,toneid,duration_ms)

Arguments:
vox_chan – The voice channel
toneid - One of the predefined toneIDs to play
durations_ms – The duration of the tone in milliseconds

Description:    This function allows one of the Aculab  predefined simple output tones to be played
on the given vox_chan.   (See Prosody document  for the list of predefine output tones)

Returns:  Returns 0 on success or negative error code

-o-

SMplaydigits
Synopsis:

SMplaydigits(vox_chan,digit_str,[inter_dur_ms,dig_dur_ms])
Arguments:

vox_chan – The voice channel
digit_str – The string of DTMF digits to play
[inter_dur_ms] – The gap between digits (in millseconds)
[digit_dur_ms] – The digit duration in milliseconds

Description:   This function plays the string of DTMF digits specified in the digit_str argument.    
The optional inter_dur_ms and dig_dur_ms  allow for the delay between digits and the digit
duration to be specified (in milliseconds).   If these are omitted or set to 0 then the Aculab default
durations are used.

Returns:  Returns 0 upon success or negative error code.

-o-

SMplayptone
Synopsis:

SMplaycptone(vox_chan,duration_ms,type,tone_id1,on_cad1_ms,off_cad1_ms[,tone_id2,on_cad2
_ms,off_cad2_ms[,toneid3…]])
Arguments:

vox_chan – The voice channel



p310

© Zentel Telecom Ltd, 2009

duration_ms – The duration of the tone (in millseconds) or the number of times the tone
should be played (for type repeat).

type – The tone type (0=Once, 1=Repeat, 2=Continuous)
tone_id1 – The tone id of the first tone frequency
on_cad1 – The on time of the fist tone frequency (in ms)
off_cad1 – The off time of the first tone frequency (in ms)
[tone_id2] – The tone id of the second tone frequency
[on_cad2] – The on time of the second tone frequency (in ms)
[off_cad2] – The off time of the second tone frequency (in ms)
etc

Description:    This  function  enables  call  progress  tones  to  be  played  made  up  of  one  or  more
frequencies and cadences on the specified vox_chan.      
The duration_ms argument specified the number of milliseconds that the tone will be played for.  
If it is set to 0 then this means that the tone should be played indefinitely until a terminating event
occurs (such as SMabort() or hangup signal).     

Note that If the type is set to SMPlayCPToneTypeOneShot  then the duration_ms is ignored and the
set of tone cadences will be played just once.

The type argument can take one of the following values as defined in ACULAB.INC:

# Call Progress tone types
const SMPlayCPToneTypeOneShot =0;
const SMPlayCPToneTypeRepeat =1;
const SMPlayCPToneTypeContinuous =2;

If  the  type  is  set  to  SMPlayCPToneTypeRepeat  or  SMPlayCPToneTypeContinuous   then  the
duration_ms defines the number of milliseconds that the tone will play before it terminates with a
TERM_CPTONE event.

The type SMPlayCPToneTypeContinuous is special (an depreciated by SMplaytone()) since it only
plays the first tone specified by tone_id1 as a continuous tone (cadences and subsequent tones are
ignore).

The function also takes the set of tones and cadences that make up the tone through the arguments:
   tone_id1, on_cad1_ms, on_cad1_ms  and there may be a number of further tones that make up
the  call  progress  tone  through  the  optional  arguments:   tone_id2,  on_cad2_ms,  on_cad2_ms  ,
tone_id3, on_cad3_ms, on_cad3_ms   and so on..

The tone_id specifies the tone ID of the tone to play, the on_cad_ms specifies the duration (in ms)
that the tone is on for, and off_cad_msdefines the duration (in ms) of silence after this tone.

Returns:  Returns 0 if successful or a negative error code.

-o-

SMgetrecrognised
Synopsis:

SMgetrecognised(vox_chan,timeout_10ths,&pType,&pParam0,&pParam1)
Arguments:

vox_chan – The voice channel



p311

© Zentel Telecom Ltd, 2009

timeout_10ths – The time to wait for a recognition event
pType – Pointer to a variable that will hold the returned recognition event type
pParam0 – Pointer to a variable that will hold the returned recognition event parameter 0

data 
pParam1 - Pointer to a variable that will hold the returned recognition event parameter 1

data 

Description:   This function waits for and returns details of a single recognition event that occurred
as a result of a call to sm_wait_for() initiated by one of the functions such as SMctlPulse(),
SMctlCPtone(), SMctlGrunt() and SMctlASR()    (Note that SMctlDTMF causes DTMF digits to
be copied to a separate channel buffer and should be retrieved using the SMwaittones() and
SMgetttones() function instead).

If detection of pulse, CP tones, Grunt or ASR have been initiated through one of the above
functions then this function can wait for and collect the received recognition events caused by
detection of these events.

Only a signal recognition event at a time can be retrieved by this function and the timeout_10ths
argument defines how long (in 1/10th seconds) that the function will wait before terminating with a
TERM_TIMEOUT event.    If there is already a recognition event  in the channel buffer then the
function will terminate immediately with a TERM_RECOG event and the variables pointed to by
the pType, pParam0 and pParam1 will hold the information about the received recognition event.

The variable pointed to by the pType argument will be set to one of the following values as defined
in ACULAB.INC:

# Recognition event types

const SMRecognisedNothing =0;

const SMRecognisedTrainingDigit =1;

const SMRecognisedDigit =2;

const SMRecognisedTone =3;

const SMRecognisedCPTone =4;

const SMRecognisedGruntStart =5;

const SMRecognisedGruntEnd =6;

const SMRecognisedASRResult =7;

const SMRecognisedASRUncertain =8;

const SMRecognisedASRRejected =9;

const SMRecognisedASRTimeout =10;

const SMRecognisedCatSig =11;

const SMRecognisedOverrun =12;

const SMRecognisedANS =13;

Note however that in the current version of the library the following recognition types will not be
received:

const SMRecognisedCatSig =11;

const SMRecognisedANS =13;

Also the SMRecognisedDigit events are handled by the SMwaittones() and SMgetttones()
functions and will not be returned by this function, and the SMRecognisedNothing event is
ignored.

The variables pointed to by pParam0 and pParam1 will be set to values depending on the pType.  
See the Prosody Speech API guide for details (sm_get_recognised()) for details of what these



p312

© Zentel Telecom Ltd, 2009

parameters will be set to for each type. 

Returns:   Returns 0 upon success or negative error code.

-o-

SMmode
Synopsis:

SMmode(vox_chan,non_blocking)

Arguments:
vox_chan – The voice channel
non_blocking – Set to 0 for blocking mode, 1 to one-shot non-blocking mode, 2 for

continuous non_blocking mode.

Description:    This  function  allows  for  certain  speech  functions  (such  as  SMplay(),  SMrecord()
etc) to be carried out in either blocking or non-blocking mode.   All  of  the speech functions that
operate in this way are known as blocking speech functions.   In blocking mode the calling Telecom
Engine task will block until the speech function has completed after which the function will return
with  the  terminating  event  that  caused  the  blocking  speech  function  to  complete.        In
non-blocking  mode  the  function  will  return  immediately  and  the  speech  function  will  continue
playing in the background while the Telecom Engine task continues processing.      In this case it is
up to the program to wait for the operation to complete (using SMstate()) or to specifically abort
the speech operation using SMabort().

See Blocking and Non-blocking Mode  for more information.

If the non_blocking argument is set to 0 then this causes all subsequent blocking speech functions
to block the calling telecom Engine task (this is the default behaviour).      

If  the  non-blocking  flag  is  set  to  1  then  the  next  blocking  speech  function  will  operate  in
non-blocking mode after which further calls to blocking speech functions will block the calling task
as normal.

If  the  non-blocking  flag  is  set  to  1  then  the  next  blocking  speech  function  will  operate  in
non-blocking mode and a call to SMmode() with the non-blocking flag set to 0 will be required to
set the channel back to blocking mode again.

Returns:   Returns 0 is successful or a negative error code.

-o-

SMtrace
Synopsis:

SMtrace(vox_chan,on_off)

Arguments:
vox_chan – The voice channel
on_off – set to 1 to turn event tracing on, 0 to turn it off



p313

© Zentel Telecom Ltd, 2009

Description:  This function allows for event tracing to be turned on or off for a particular vox_chan
.       If turned on then all events on the specified channel will be logged to the system trace log.

Returns:  Return 0 on success or -1 is bad channel is specified.

-o-

SMaddASRvocab
Synopsis:

item_id=SMaddASRvocab(module,filename)

Arguments:
module – The module ID upon which to load the vocabulary (numbered from 0 in the order

that the boards are opened)
filename – The name of the vocabulary file to load to the module.

Description:  This  function  downloads  an  ASR  vocabulary  to  the  specified  module  modules  are
numbered  from  0  from  the  first  module  on  the  first  speech  boards  and  are  then  numbered
sequentially across all boards in the order that the boards are opened.

The filename is the path to the file containing the vocabulary item.

Returns: Returns 0 if successful or negative error code

-o-

SMclrASRvocabs
Synopsis:   

SMclrASRvocabs(module)

Arguments:
module - The module ID

Description:    This function clears any vocabulary files that have previously been downloaded to
the specified speech module.

Returns:  Returns 0 if successful or -1 if an invalid module was specified

-o-

SMsetASRchanparm
Synopsis:

SMsetASRchanparm(vox_chan,parmID,value[,parmID1,value1...])

Arguments:
vox_chan – The voice channel
parmID  - The ID of the parameter to set



p314

© Zentel Telecom Ltd, 2009

value – The value to set the parameter to 
[parmID1] – Multiple parameters can be set through these optional arguments
[value1] -  Multiple parameters can be set through these optional arguments
etc

Description:   This function allows the ASR parameters to be set for a particular vox_chan prior to
a call to SMctlASR().        The parmID argument specifies which parameter is to be set and can be
one of the following values as defined in the ACULAB.INC:

# ASR parameters (as used by SMsetASRchanparm())

const ASRP_VFR_MAX_FRAMES =0;

const ASRP_VFR_DIFF_THRESHOLD =1;

const ASRP_PSE_MAX_FRAMES =2;

const ASRP_PSE_MIN_FRAMES =3;

const ASRP_VIT_SOFT_THRESHOLD =4;

const ASRP_VIT_HARD_THRESHOLD =5;

const ASRP_VIT_SNR_ADJUST =6;

The above parameters map to one of the fields of the SM_ASR_CHARACTERISTICS structure as
follows:

ParmID Maps to Field:
ASRP_VFR_MAX_FRAMES SM_ASR_CHARACTERISTICS.vfr_max_

frames  

ASRP_VFR_DIFF_THRESHOLD SM_ASR_CHARACTERISTICS.vfr_diff_t
hreshold

ASRP_PSE_MAX_FRAMES SM_ASR_CHARACTERISTICS.pse_max_
frames

ASRP_PSE_MIN_FRAMES SM_ASR_CHARACTERISTICS.pse_min_
frames

ASRP_VIT_SOFT_THRESHOLD SM_ASR_CHARACTERISTICS.vit_soft_t
hreshold

ASRP_VIT_HARD_THRESHOLD SM_ASR_CHARACTERISTICS.vit_hard_t
hreshold

ASRP_VIT_SNR_ADJUST SM_ASR_CHARACTERISTICS.vit_snr_a
djust

See  the  description  of  the  Aculab  sm_listen_for_asr()  function  for  more  information  about  these
parameters and their meanings.

Returns:  Returns 0 if successful or a negative error code.

-o-

SMaddASRitem
Synopsis:

SMaddASRitem(vox_chan,vocab_id,user_id) 

Arguments:
vox_chan – The voice channel
vocab_id – The Vocabulary ID to add to the set of ASR items that can be detaected on the



p315

© Zentel Telecom Ltd, 2009

channel.
user_id -  The user defined ID for the vocabulary item

Description:   Each channel can have a set of Active Speech Recognition (ASR) vocabulary items
defined for it that may  be recognised after a call to SMctlASR().     This function allows the
vocab_id  and associated user_id to be added to this set of ASR vocab items for the channel.      
The set of vocabulary items on a channel will only become active upon the next call to SMctlASR
().

Returns:  Returns 0 if successful or a negative error code.

-o-

SMclrASRitems
Synopsis:

SMclrASRitems(vox_chan) {

Arguments:
vox_chan – The voice channel

Description:   This function allows for the current set of vocabulary items to be cleared on the
specified vox_chan.       Note that the previous set of vocabulary items will still be active on the
vox_chan if a previous call was made to SMctlASR() with a vocabulary set defined and the off_
on_cont  flag set to 1 or 2.         To stop ASR events from being recoignised then a call to
SMctlASR() should be made with off_on_cont  flag set to 0.

Returns:  Returns 0  if successful or a negative error code.

-o-

SMctlASR
Synopsis:

SMctlASR(vox_chan,off_on_cont)

Arguments:
vox_chan – The voice channel
off_on_cont – Set to 0 to turn ASR recognition off, 1 to turn it on for a single recognition

event, 2 to turn it on contimuously

Description:    This function allows Active Speech Recognition (ASR) to be turned on or off on
the specified vox_chan.       The set of vocabulary items that will be recognised are defined by calls
to the SMaddASRitem() function.     If off_on_cont is set to 0 the ASR detection is turned off.    If
off_on_cont is set to 1 then a signal recognition event will be activated for the vocabulary set on the
channel.     Once one of these vocabulary items has been recognised then the ASR will be turned
off again.

For continous ASR vocabulary recognition the off_on_cont should be set to 2.

Returns:    Returns 0 if successful or a negative error code.



p316

© Zentel Telecom Ltd, 2009

-o-

SMconfstart
Synopsis:

conf_id=SMconfstart(module)

Arguments:
module – The module id upon which to start the conference.

Description:  This function creates a conference on the specified module.    Speech module IDs are
numbered from 0 starting from the first module on the first prosody speech boards and then opened
in sequence across the boards in the order that they are opened.        If successful the function will
return a unique conference ID (conf_id) that can be used in all subsequent conference calls .

Returns:  Returns a unique conference ID or a negative error code.

-o-

SMconfjoin
Synopsis:

 SMconfjoin(conf_id,vox_chan_out[,Type(1-listen
only),[vox_chan_in,OutAgc,OutVol,InAGC,InVol])

Arguments:
conf_id – The conference ID
vox_chan_out –  The voice channel whose output side will carry the conference audio
[Type] – Set to 0 for full duplex (default) or 1 for listen only

            [vox_chan_in] – The voice channel whose input side will be inserted into the conference
(by default same as vox_chan_out)

[OutAgc] – Set to 1 (default) to enable automatic gain control on the output from the
conference

[OutVol] – Set to the output volume in DB (0 by default)
[InAGC] – Set to 1 (default) to enable automatic gain control on the input to the conference
[InVol] - Set to the output volume in DB (0 by default)

Description:    This  function  allows  the  transmit  side  of  the  voice  channel  specified  by  
vox_chan_out to carry the audio output from the conference.        Since the transmit side of a voice
channel is automatically 'nailed' to the external H.100 or SCBUS timeslot then another device (such
as a port on on E1 network channel) can then 'listen' to this timeslot to receive the output from the
conference.          

The optional type argument can specify whether the conference is to be joined in 'listen only' mode
(in which case the vox_chan_in argument is ignored) or the type is set to 0 then the conference in
joined in 'full duplex' mode in which case the vox_chan_in defines the channel whose output will
be inserted into the conference.

By  default  the  optional  vox_chan_in  argument  is  set  to  the  same  voice  channel  as  specified  by
vox_chan_outbut it can be a different voice channel if required.



p317

© Zentel Telecom Ltd, 2009

The optional OutAgc argument can be set to 1 (default) if  automatic gain control  (AGC) is  to  be
enabled  on  the  conference output  to  vox_chan_out,  or  0  to  disable  AGC on  the  output  from the
conference.

The optional OutVol can be set to the volume of the output from the conference in DB (default 0).

The optional  InAgc argument can  be  set  to  1  (default)  if  automatic  gain control  (AGC) is  to  be
enabled  on  the  conference  input  from  vox_chan_in,  or  0  to  disable  AGC  on  the  input  to  the
conference.

The optional InVol can be set to the volume of the input to the conference in DB (default 0).

Below is an example:

    #  Assume that a call has been received and accepted on port and chan of the network card.       

    # Cause jump to onsignal if hanghup occurs.

    CCuse(port,chan);

    vox_chan=1;

    # Now make a full duplex switch between the network chan and the prosody chan

    CClisten(port,chan,SMgetslot(vox_chan));

    SMlisten(vox_chan,CCgetslot(port,chan);

    # The inbound caller will hear this welcome message first

    SMplay(vox_line,"welcome.vox");

    ## Create a conference on module 0.

    conf_id=SMconfstart(0);

    if(conf_id < 0)

errlog("Error creating conference on module 0");

stop;

    end

    ## Add Vox channel to conference..

    x=SMconfjoin(conf_id,vox_chan);

    if(x < 0)

errlog("Error joining conference id=",conf_id," err=",x);

stop;

    end

    # Two more conference channels

    vox_chan2=2;

    vox_chan3=3;

    # Two spare voice channels to play prompts

    vox_chan4=4;

    vox_chan5=5;

    ## add these Vox channels to conference..

    x=SMconfjoin(conf_id,vox_chan2);

    if(x < 0)

errlog("Error joining conference id=",conf_id," err=",x);

stop;

    end

    x=SMconfjoin(conf_id,vox_chan3);

    if(x < 0)

errlog("Error joining conference id=",conf_id," err=",x);

stop;

    end



p318

© Zentel Telecom Ltd, 2009

    # Make these two channels listen to vox channels 4 and 5

    # Since anything that vox_chan, vox_chan2 and vox_chan3 listen to will automatically be inserted into the

conference

    SMlisten(vox_chan2,SMgetslot(vox_chan4));

    SMlisten(vox_chan3,SMgetslot(vox_chan5));

    # Now loop playing prompts on channels 4 and 5 which will then be inserted into the conference as

channels 2 and 3 are listening to them..

    # only a hangup by inbound caller will interrupt this loop 

    while(1)

           # Play in non-blocking mode  (single shot)

           SMmode(vox_chan4);

           SMmode(vox_chan5);

           # These two prompts will be mixed together in the conference and heard by the inbound caller 

           SMplay(vox_chan4,"Prompt1.vox");

           SMplay(vox_chan4,"Prompt2.vox");

     # wait for both channels to finish

     while(not SMstate(vox_chan4) and not SMstate(vox_chan5)) 

   sleep(30);

       endwhile

    endwhile

… etc

onsignal

# Abort play on channels 4 and 5

SMabort(vox_chan4);

SMabort(vox_chan5);

      # kill the conference

confend(conf_id);

.. etc

endonsignal

Returns:   Returns 0 if successful or a negative error code.

-o-

SMconfleave
Synopsis:

 SMconfleave(conf_id,vox_chan_out[,vox_chan_in])

Arguments:
conf_id – The conference ID
vox_chan_out – The voice channel whose output carries the conference audio
[vox_chan_in]  -  The voice channel whose input will be inserted to the conference (default

the same as vox_chan_out)

Description:    This  function  allows  a  voice  channel  to  leave  the  specified  conference.     The
vox_chan_out and vox_chan_in must match the channels specified in the SMconfjoin() function.   
  By default the optional vox_chan_in will be set the same as the vox_chan_out argument.

Returns:   Returns 0 if successful or a negative error code if the conf_id is invalid or if the
vox_chan_out and/or vox_chan_indo not match a channel that was added using the SMconfjoin()
function.



p319

© Zentel Telecom Ltd, 2009

-o-

SMconfend
Synopsis:

 SMconfend(conf_id)

Arguments:
conf_id – The conference ID

Description:  This function will force all  channels to leave a conference and will  then delete the
conference.        The conference ID will no longer be valid after a call to this function/

Returns:  Returns 0 if successful or -1 if the conf_id was invalid.

-o-

SMdump
Synopsis:

SMdump() - Dumps various information about the state of the system

Description:   This function is used for debugging purposes and will dump information about the
Aculab speech channels to the system tracelog.

Returns:   Nothing

-o-

SMstate
Synopsis:

chan_state=SMstate(vox_chan) 

Arguments:
vox_chan – The voice channel

Description:   This  function  returns  the  blocking  speech  function  type  currently  running  on  the
specified vox_chan or 0 if  the channel is  idle.       If the channel is  currently running a blocking
speech function then the chan_state returned by the function will be one of the following as defined
in the ACULAB.INC file:

const MTF_PLAY         = 1;

const MTF_RECORD       = 2;

const MTF_WAITTONE     = 3;

const MTF_PLAYTONE     = 4;

const MTF_PLAYDIGITS   = 5;



p320

© Zentel Telecom Ltd, 2009

const MTF_PLAYCPTONE    = 6;

const MTF_WAITRECOG    = 7;

const MTF_PLAYIPF      = 8;   

This function can be used to determine whether a speech function has completed on a channel and
is used in particular in non-blocking mode (see SMmode()).

Returns:   Returns the channel state or -1 if a bad channel was specified

-o-

SMdetected
Synopsis:

num_items=SMdetected(vox_chan[,type]) 

Arguments:
vox_chan – The voice channel
type – Set to 0 to return the number of DTMF digits, 1 to return the number of other

recognition events detected.

Description:    This  function  allows  for  the  number  of  DTMF  (if  type=0)  or  other  recognition
events (if type=1) that have been received on the specified vox_chan.

Returns:   Returns the number of detected items in the appropriate channel buffer depending on
the type argument,  else returns -1 if an invalid channel was specified.

-o-

SMword
Synopsis:

SMword(vox_chan,prompt_no[,ipf_id])

Arguments:
vox_chan – The voice channel
prompt_no -  The prompt number to add to the list of words to play (ranging from 1 upwards)
[ipf_id]  - The optional IPF number  (ranging from 1 upwards).

Description:      See  Index Prompt Files for more information about index prompt file
initialisation.       

This function allows for words to be added one at a time to the list of words from the Index Prompt
Files to play on the specified vox_chan (with a call to SMplayph()).     

To start a new list of words the function should be called with a prompt number of 0, otherwise the
word will be added to the existing list that is being built up.

The prompt_no identifies the index into the IPF file of the prompt to play (starting at 0).      



p321

© Zentel Telecom Ltd, 2009

The optional ipf_id allows a specific IPF_ID to be specified (as defined in the PR.PAR file).       If
no ipf_id is specified then the one given in the SMplayph() will be used.    IF an ipf_id is specified
then the one given in he SMplayph() will be ignored for this word and the one specified here will
be used instead.

Returns:   Returns 0 if successful or a negative error code.

-o-

SMplayph
Synopsis:

term_event=SMplayph(vox_chan [,ipf_id, dataformat, samplerate])

Arguments:
vox_chan – The voice channel
[ipf_id] – Optional ipf_id (defaults to 1 if not specified)
[dataformat] – Optional voice prompt format (defaults to SMDataFormatOKIADPCM)

` [samplerate] – The sample rate of the file (defaults to 6000)

Description:  This function plays the set of words/phrases that have been added to the list with the
SMword()  function.      If  the  SMword()  function was called specifying a  ipf_id  then any ipf_id
specified in this fuction will be ignored for that particular word.      

If the optional argument ipf_id is not specified then it defaults to 1.     By default the words added
using  the  SMword()  function  will  play  from  the  given  ipf_id  file  (unless  a  specific  one  was
specified in a call to SMword()).

The optional dataformat argument defines what the speech file format in the IPF file, and defaults
to SMDataFormatOKIADPCM  (see SMplay() for a list of valid speech file formats).

The optional  samplerate can specify the same rate of the data in the IPF file and defaults to 6000 if
not specified (see SMplay for a list of valid sample rates).

Returns:  The function will return the terminating event that caused the play function to complete
which will be one of the following as defined in ACULAB.INC

# Terminating events

const TERM_ERROR       = -1;

const TERM_TONE        = 1;

const TERM_ABORT       = 6;

const TERM_EODATA      = 7;

The function may also return other negative error codes if invalid parameters were specified.

-o-

SMplaypr



p322

© Zentel Telecom Ltd, 2009

Synopsis:
term_event=SMplaypr(vox_chan,ipf_id, prompt_no [,dataformat, samplerate])

Arguments:
vox_chan – The voice channel
ipf_id – The ipf file ID  (as specified in the PR.PAR)
prompt_no – The prompt number withing the IPF file to play (starting from 1)
[dataformat] – Optional format of ipf file
[samplerate] – Optional sample rate of ipf file

Description:    This  function  allows  a  single  word/phrase  to  be  played  from  a  specific  IPF  file
specified by the ipf_id.    The word/phrase to play is specified by the prompt_no argument,

The optional dataformat argument defines what the speech file format in the IPF file, and defaults
to SMDataFormatOKIADPCM  (see SMplay() for a list of valid speech file formats).

The optional  samplerate can specify the same rate of the data in the IPF file and defaults to 6000 if
not specified (see SMplay for a list of valid sample rates).

Returns:   The function will return the terminating event that caused the play function to complete
which will be one of the following as defined in ACULAB.INC

# Terminating events

const TERM_ERROR        = -1;

const TERM_TONE          = 1;

const TERM_ABORT        = 6;

const TERM_EODATA     = 7;

The function may also return other negative error codes if invalid parameters were specified.

-o-

SMplaystrph
Synopsis:

SMplaystrph(vox_chan,ipf_id,str_words[,dataformat,samplerate])

Arguments:
vox_chan – The voice channel
ipf_id – The IPF id as specified in the PR.PAR file
str_words – A string containing the list of words to play from the IPF file (as ASCII values)
[dataformat] – Optional format of ipf file
[samplerate] – Optional sample rate of ipf file

Description:  This function allow for a string of words/phrases from the IPF file specified by ipf_id
to  be  played.         The  string_words  string  contains  the  string  of  ascii  values  each  of  which
represents the id of a prompt within the IPF file to play.

For example:

x=SMplaystrph(vox_chan,1,"`01`04`06");



p323

© Zentel Telecom Ltd, 2009

The above function call will play the first, fourth and sixth prompts from IPF file with ipf_id = 1

Returns:  The function will return the terminating event that caused the play function to complete
which will be one of the following as defined in ACULAB.INC

# Terminating events

const TERM_ERROR        = -1;

const TERM_TONE          = 1;

const TERM_ABORT        = 6;

const TERM_EODATA     = 7;

The function may also return other negative error codes if invalid parameters were specified.

-o-

SMplaystrphm
Synopsis:

SMplaystrphm(vox_chan,str_words[,dataformat,samplerate])

Arguments:
vox_chan – The voice channel
str_words – A string containing the list of pairs of ipf_ids and words to play (as ASCII

values)
[dataformat] – Optional format of ipf file
[samplerate] – Optional sample rate of ipf file

Description:   This  function  allow  for  a  string  of  words/phrases  from  different  IPF  files  to  be
specified by pairs of values in the str_words argument.        The string_words string contains the
string of pairs of ascii values where each pair represents the ipf_id and the prompt_num  for  each
word to be played.       

For example:

x=SMplaystrph(vox_chan,,"`01`04`06`02");

The above function call will play the 4th prompt from the 1st IPF and the 2nd prompt from the 6th
IPF.

Returns:  The function will return the terminating event that caused the play function to complete
which will be one of the following as defined in ACULAB.INC

# Terminating events

const TERM_ERROR        = -1;

const TERM_TONE          = 1;

const TERM_ABORT        = 6;

const TERM_EODATA     = 7;

The function may also return other negative error codes if invalid parameters were specified.

/



p324

© Zentel Telecom Ltd, 2009

-o-

SMcreateVMP
Synopsis:

SMcreateVMP(module_id,[local_ip_addr])
Arguments:

module_id – The module number
local_ip_addr - Optional local IP address

Description:   This function creates a Virtual Media Processing port on the specified DSP
module_id.    Modules are numbered from 0 in the order that they are opened when the
CXACUDSP.DLL library initialises.      If an ACUCFG.CFG is supplied then this defines the order
that the modules are opened, otherwise the acu_get_system_snapshot() will define the order that
the cards (and thus the DSP modules) are opened.

The optional local_ip_addr argument allows a local ip address to be specified to identify a network
adaptor within the system in the case when there are multiple network adaptors to choose from.

The function creates vmprx and vmptx virtual media processing end-points on the specified
module to allow RTP data to be transmitted to and received from a remote ip destination.      This
function maps to the Aculab  sm_vmprx_create() and sm_vmptx_create() functions.

Upon success the function will return a vmp_handle which can be used in subsequent calls that
refer to this VMP channel.

For IP calls the VMP channel should be specified in call parameters for the  CCaccept() call as
follows:

      port=0;   

      chan=1;

      vox_chan=1;

      module_id=0;

      vmp_chan=SMcreateVMP(module_id);

      // specify a codec on the vmp channel

      SMsetcodec(vmp_chan,0,G711_ALAW);

      

      ....

      while(1)

           x=CCwait(port,chan,WAIT_FOREVER,&state);

           if(state eq CS_INCOMING_CALL_DET)

                CCalerting(port,chan);   // send INCOMING_RINGING event

           else if(state eq CS_WAIT_FOR_ACCEPT)

                CCclrparms(port,chan,PARM_TYPE_ACCEPT);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

                CCaccept(port,chan);

           endif endif

      endwhile

      // make full duplex connection between VMP and a voice channel datafeeds

      SMfeedlisten(vmp_chan,TYPE_VMP,vox_chan,TYPE_VOX);

      SMfeedlisten(vox_chan,TYPE_VOX,vmp_chan,TYPE_VMP);



p325

© Zentel Telecom Ltd, 2009

 

      SMplay(vox_chan,"TEST.VOX");

      etc...

Returns:   Upon success this function returns a VMP channel handle, otherwise it returns a
negative error code..

-o-

SMtraceVMP
Synopsis:

SMtraceVMP(vmp_chan,tracelevel)

Arguments:
vmp_chan – The VMP channel handle (as returned from SMcreateVMP())
tracelevel -  The trace level (0=Off)

Description:   This function allows trace to be turned on or off on the VMP channel specified by
vmp_chan.      Set the tracelevel to 0 to turn trace off or a non-zero value to turn trace on.

Returns:   0

-o-

SMdestroyVMP
Synopsis:

SMdestryVMP(vmp_chan)

Arguments:
vmp_chan – The VMP channel handle (as returned from SMcreateVMP())

Description:   This function releases the VMP end-point specified by vmp_chan and frees the
handle.    It is up to the programmer to decide whether VMP channels are allocated once upon
start-up or whether they are allocated dynamically as and when required (e.g. when an inbound IP
call is detected).

The following example shows a VMP being created dynamically when an inbound call is received
on an IP channel after which it is destroyed with SMdestroyVMP():

$include "aculab.inc"

main

   int port,chan,vox_chan,module_id,x,state;

      port=0;   

      chan=1;

      vox_chan=1;

      module_id=0;

      while(1)

           x=CCwait(port,chan,WAIT_FOREVER,&state);

           if(state eq CS_INCOMING_CALL_DET)

                CCalerting(port,chan);   // send INCOMING_RINGING event

           else if(state eq CS_WAIT_FOR_ACCEPT)

                vmp_chan=SMcreateVMP(module_id);



p326

© Zentel Telecom Ltd, 2009

                // specify a codec on the vmp channel

                SMsetcodec(vmp_chan,0,G711_ALAW);

      

      

                CCclrparms(port,chan,PARM_TYPE_ACCEPT);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

                CCaccept(port,chan);

           endif endif

      endwhile

      // make full duplex connection between VMP and a voice channel datafeeds

      SMfeedlisten(vmp_chan,TYPE_VMP,vox_chan,TYPE_VOX);

      SMfeedlisten(vox_chan,TYPE_VOX,vmp_chan,TYPE_VMP);

      // play a prompt 

      SMplay(vox_chan,"TEST.VOX");

      // Stop the full duplex listen to datafeeds

      SMfeedunlisten(vmp_chan,TYPE_VMP);

      SMfeedunlisten(vox_chan,TYPE_VOX);

      // release the VMP

      SMdestroyVMP(vmp_chan);

      // Clear down the call

      CChangup(port,chan);

      while(CCstate(port,chan)!=CS_IDLE)

          sleep(1);

      endwhile

      CCrelease(port,chan);

      // restart program to wait for next call..

      restart;

endmain

           

           
     

Returns:   0 upon success or a negative error code.

-o-

SMsetcodec
Synopsis:

SMsetcodec(vmp_chan,array_index,codecID[,vad[,fpp[,options]]])
)

Arguments:
vmp_chan – The VMP channel handle (as returned from SMcreateVMP())

         array_index - Index of element in the codec array to set
         codecID - The Id of the codec to set in the codec array

vad -  (Optional) Turn Voice Activity Detection on or off (0=Off)
fpp -  (Optional) number of frames per packet
options -  (Optional) options



p327

© Zentel Telecom Ltd, 2009

Description:   This function allows elements of the array of supported codecs to be set on the VMP
specified by vmp_chan.
Each VMP channel has an array of up to 11 codecs which it can accept which are indexed from 0
through to 10 by the array_index argument.

The codecID should be set to one of the following values as specified in aculab.inc:

const NOT_INITIALISED = 0;

const G711_ALAW  = 1;

const G711_ULAW  = 2;

const G723 = 3;

const G729  = 4;

const G729A  = 5;

const T38 = 6;

const G726 = 7;

const GSM_FR = 8;

const iLBC = 9;

const RFC4040 = 10;

const G728 = 11;

const AMR_NB = 12;

const AMR_WB = 13;

const EVRC = 14;

const EVRC0 = 15; // headerless EVRC 

const SMV = 16;

const SMV0 = 17; // headerless SMV 

If no valid codecs are specified then the system codec list will be used.   If this also contains no
valid codecs then calls will be failed with a parameter error.

The optional vad argument allows the voice activity detector to be turned on for this call.    Turning
on the voice activity   detector allows the IP Telephony card to perform silence suppression for that
call.   Permitted values are :

const VAD_ON= 1;
const VAD_OFF= 0;

The optional fpp can be used in API calls, prior to call connection, to specify the actual number of
frames per
packet. The minimum value is 1 and the maximum value is 3, with the default being 2 frames per
packet.

The optional options argument is not currently used and will be ignored.

Returns:   0 upon success or a negative error code.

-o-

SMclrcodecs
Synopsis:

SMcrlcodec(vmp_chan)

Arguments:
vmp_chan – The VMP channel handle (as returned from SMcreateVMP())



p328

© Zentel Telecom Ltd, 2009

Description:   This function clears all of the entries in the codec array for the specified VMP
channel.    

Returns:   0 upon success or -1 if an invalid vmp_chan is specified.

-o-

SMcreateTDM
Synopsis:

tdm_chan=SMcreateTDM(vox_chan)
Arguments:

vox_chan – The voice channel

Description:   This function creates a TDM endpoint for the voice channel specified by vox_chan. 
 The vox_chan must reside on a module on a board the supports TDM end-points (i.e Prosody X)
and upon success it returns a TDM channel handle which should be used in all future function calls
that reference this TDM.        The internal Prosody stream and time slot and module id are obtained
from the internal data associated with the vox_chan and are used when creating the TDM endpoint.

The function creates tdmprx and tdmtx end-points to allow RTP data to be transmitted to and
received from a data feed and transmittted onto the internal TDM stream and timeslot.      This
function maps to the Aculab  sm_tdmrx_create() and sm_tdmtx_create() functions.

To create a TDM endpoint for an E1 channel you should use the CCcreateTDM(port,chan)
function.

Returns:   Upon success this function returns a TDM channel handle, otherwise it returns a
negative error code..

-o-

SMtraceTDM
Synopsis:

SMtraceTDM(tdm_chan,tracelevel)

Arguments:
tdm_chan – The TDM channel handle (as returned from SMcreateTDM() or

CCvreateTDM())
tracelevel -  The trace level (0=Off)

Description:   This function allows trace to be turned on or off on the TDM channel specified by
tdm_chan.      Set the tracelevel to 0 to turn trace off or a non-zero value to turn trace on.

Returns:   0

-o-



p329

© Zentel Telecom Ltd, 2009

SMdestroyTDM
Synopsis:

SMdestryTDM(tdm_chan)

Arguments:
tmd_chan – The TDM channel handle (as returned from SMcreateTDM() or

CCcreateTDM())

Description:   This function releases the TDM end-point specified by tdm_chan and frees the
handle.    It is up to the programmer to decide whether TDM channels are allocated once upon
start-up or whether they are allocated dynamically as and when required.

Returns:  0 upon success or a negative error code

-o-

SMfeedlisten
Synopsis:

SMfeedlisten(chan1_id,chan1_type,chan2_id,chan2_type)

Arguments:
chan1_id – The channel into which the feed will be fed
chan1_type - The channel type (TYPE_VOX, TYPE_VMP, TYPE_TDM)
chan2_id -  The channel whose feed to listen to  
chan2_type - The channel type (TYPE_VOX, TYPE_VMP, TYPE_TDM)

Description:    This function makes the channel specified by the arguments chan1_id and
chan1_type 'listen' to the datafeeds provided by the channel specified by the arguments chan2_id
and chan2_type.   

The specified channels can be one of the following types as defined in aculab.inc:

const TYPE_VOX=0;

const TYPE_VMP=1;

const TYPE_TDM=2;

Channel types TYPE_VMP and TYPE_TDM must be have been previously created using the
appropriate functions (SMcreateVMP() or SMcreateTMD()),   whereas TYPE_VOX channels are
allocated at startup.

The first time a TYPE_VOX, TYPE_VMP, or TYPE_TDM channel is used as a feed (i.e as 
chan2_id and chan2_type arguments) then the datafeed for that channel is created and stored in the
internal structure associated with that channel.

For example,  if you make a VMP channel listen to a VOX channel datafeed then any prompts or
tones played on that VOX channel will be output by the VMP channel.            For Example:

      int vox_chan, port, chan, vmp_chan, module_id;
    vox_chan=1;

    module_id=0;



p330

© Zentel Telecom Ltd, 2009

    port=0;

    chan=1;

    vmp_chan=SMcreateVMP(module_id);

    // The vmp_chan will now listen to the vox_chan datafeed 

    SMfeedlisten(vmp_chan,TYPE_VMP,vox_chan,TYPE_VOX);

    // Wait for an inbound call (using the newly created VMP when we accept)

    CCenablein(port,chan);

    while(1)

           x=CCwait(port,chan,WAIT_FOREVER,&state);

           if(state eq CS_INCOMING_CALL_DET)

                CCalerting(port,chan);   // send INCOMING_RINGING event

           else if(state eq CS_WAIT_FOR_ACCEPT)

                vmp_chan=SMcreateVMP(module_id);

                // specify a codec on the vmp channel

                SMsetcodec(vmp_chan,0,G711_ALAW);

      

      

                CCclrparms(port,chan,PARM_TYPE_ACCEPT);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan);

                CCsetparm(port,chan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

                CCaccept(port,chan);

           endif endif

     endwhile

     // play a prompt which because of the above SMfeedlisten() will be heard by the caller..

     SMplay(vox_chan,"TEST.VOX");

     ... etc

To make a full duplex connection then make each channel listen to the other:

    // The vmp_chan will now listen to the vox_chan datafeed 

    SMfeedlisten(vmp_chan,TYPE_VMP,vox_chan,TYPE_VOX);

    // The vox_chan will now listen to the vmp_chan datafeed 

    SMfeedlisten(vox_chan,TYPE_VMP,vox_chan,TYPE_VMP);

For IP to TDM calls then the datafeeds from the VMP and the TDM can be connected as follows:

      int vox_chan, port, chan, vmp_chan, module_id;
    vox_chan=1;

    module_id=0;

    e1port=0;

    e1chan=1;

    ipport=8;

    ipchan=1;

    tdm_chan=CCcreateTDM(e1port,e1chan);    // Get a TDM endpoint for an E1 channel

    vmp_chan=SMcreateVMP(module_id);        // Create a VMP channel

    // specify a codec on the vmp channel

    SMsetcodec(vmp_chan,0,G711_ALAW);

    

    // Wait for an inbound call on IP channel(using the newly created VMP when we accept)

    CCenablein(ipport,ipchan);

    while(1)

           x=CCwait(ipport,ipchan,WAIT_FOREVER,&state);

           if(state eq CS_INCOMING_CALL_DET)

                CCalerting(ipport,ipchan);   // send INCOMING_RINGING event

           else if(state eq CS_WAIT_FOR_ACCEPT)



p331

© Zentel Telecom Ltd, 2009

                // specify a codec on the vmp channel

                SMsetcodec(vmp_chan,0,G711_ALAW);

      

      

                CCclrparms(ipport,ipchan,PARM_TYPE_ACCEPT);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPRXID,vmp_chan);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_VMPTXID,vmp_chan);

                CCsetparm(ipport,ipchan,PARM_TYPE_ACCEPT,CP_IPTEL_CODECS,vmp_chan);

                CCaccept(ipport,ipchan);

           endif endif

     endwhile

    // Now make outbound call on E1 port/channel

    x=CCmkcall(e1port,e1chan,"123456"."987654");

    while(1)

           x=CCwait(e1port,e1chan,WAIT_FOREVER,&state);

           if(state eq CS_OUTGOING_RINGING)

                applog("Outgoing ringing")   // send INCOMING_RINGING event

           else if(state eq CS_CALL_CONNECTED)

                break;

           else if(state eq CS_CALL_DISCONNECTED)

                // clear down the calls here and restart..

                cleardown_calls();

                restart;

           endif endif

     endwhile

    // ** Now connect the feeds from the VMP and TDM endpoint to make

    // ** a full duplex connection to connect the conversations from the IP to E1 calls   

    // The vmp_chan will now listen to the tdm_chan datafeed 

    SMfeedlisten(vmp_chan,TYPE_VMP,tdm_chan,TYPE_TDM);

    // The tdm_chan will now listen to the vpm_chan datafeed 

    SMfeedlisten(tdm_chan,TYPE_TDM,vpm_chan,TYPE_VPM);

    // The conversations are now connected..

    etc

Returns:   Upon success it returns 0, otherwise a negative error code.

-o-

SMfeedunlisten
Synopsis:

SMfeedunlisten(chan_id,chan_type)

Arguments:
chan_id – The channel to stop listening to the feed
chan_type - The channel type (TYPE_VOX, TYPE_VMP, TYPE_TDM)

Description:    This function stops the channel specified by the arguments chan_id and chan_type
from listening to a datafeeds previously connected through a SMfeedlisten() call.

The specified channels can be one of the following types as defined in aculab.inc:

const TYPE_VOX=0;

const TYPE_VMP=1;

const TYPE_TDM=2;



p332

© Zentel Telecom Ltd, 2009

Returns: 0 upon success or a negative error code.

-o-



p333

© Zentel Telecom Ltd, 2009

Index

 - A -
A First Look at the Language  12
Aculab Call Control Quick Reference  236
ADO Library Function Quick Reference  138
adoBlockMode  140
adoBusyState  140
adoConnClose  145
adoConnection  141
adoConnGetHandle  146
adoConnOpen  142
adoConnParmGet  143
adoConnParmSet  145
adoConnState  146
adoConnTransBegin  147
adoConnTransCancel  148
adoConnTransCommit  147
adoErrClear  169
adoErrCount  167
adoErrMessage  168
adoErrNative  169
adoErrValue  168
adoErrVerbose  139
adoFldCount  164
adoFldGetName  164
adoFldGetValue  165
adoFldParmGet  166
adoFldParmSet  167
adoFldSetValue  165
adoLastError  140
adoRecordSet  148
adoRSetAddNew  160
adoRSetCancelBatch  161
adoRSetCancelUpd  161
adoRSetClose  156
adoRSetCmd  152
adoRSetDelete  162
adoRSetGetHandle  156
adoRSetIsBOF  163
adoRSetMove  157
adoRSetMoveFirst  158
adoRSetMoveLast  159
adoRSetMoveNext  159
adoRSetMovePrev  159
adoRSetParmGet  154
adoRSetParmSet  156
adoRSetQuery  149
adoRSetRecCount  157
adoRSetRequery  153
adoRSetResync  152
adoRSetState  162
adoRSetUpdate  160
adoRSetUpdBatch  161
adoTrace  139
Ambiguous Operators  52
applog  112



p334

© Zentel Telecom Ltd, 2009

Arithmetic Expressions  40
Arithmetic Operators  48
Assignment Expression  26
Assignment Expressions  44
Assignment Operators  49

- B -
Blocking and Non-Blocking Mode  292
Blocking or non-blocking mode  133
Board Opening Order  288
Break Statement Definition  36
Break Statement Example  36

- C -
CCabort  245
CCaccept  246
CCalarm  240
CCalerting  267
CCanscode  271
CCclrparms  262
CCclrxparms  278
CCcreateTDM  283
CCdisconnect  247
CCenablein  246
CCenquiry  274
CCgetaddr  271
CCgetcause  267
CCgetcharge  268
CCgetcnctless  279
CCgetparm  263
CCgetslot  241
CCgetxparm  276
CChold  273
CCinttohex  281
CCkeypad  273
CClisten  242
CCmkcall  247
CCmkxcall  279
CCnotify  272
CCnports  237
CCoverlap  268
CCproceed  270
CCprogress  270
CCputcharge  272
CCreconnect  274
CCrelease  248
CCsendfeat  280
CCsetparm  249
CCsetparty  275
CCsetupack  269
CCsetxparm  278
CCsiginfo  238
CCsigtype  237
CCsndcnctless  280
CCstrtohex  281
CCtrace  241
CCtransfer  275
CCtrunktype  239
CCunlisten  243
CCunstohex  282



p335

© Zentel Telecom Ltd, 2009

CCuse  244
CCwait  244
CCwatchdog  240
Clipper Database Library Quick Reference  200
Command Line Options  68
Comparison Operators  48
Compiler Directives  57
Compiler Options  60
Constant Expressions  45
Continue Statement Definition  37
Continue Statement Example  37

- D -
db_append  204
db_close  206
db_fget  205
db_first  208
db_flock  211
db_fname  207
db_fput  205
db_fwidth  207
db_get  204
db_ixopen  203
db_key  210
db_next  209
db_nfields  207
db_nrecs  206
db_open  203
db_prev  210
db_recnum  211
db_rls  206
db_rlsall  208
Declaration Block Definition  19
Declaration Block Examples  19
Do Statement Definition  33
Do Statement Example  34

- E -
Environment Variables  64
errlog  114
Error Codes  135
Example Expression statements  27
Expression Statement Definition  24
Expression Types  40

- F -
Floating Point Library Quick Reference  212
For Statement Definition  34
For Statement Example  35
fp_add  212
fp_decs  212
fp_div  214
fp_mul  213
fp_pow  214
fp_rnd  215
fp_sub  213
Function Block Definition  21



p336

© Zentel Telecom Ltd, 2009

Function Block Examples  22
Function Declaration Definition  22
Function Expression  26
Function Expressions  47
Function Name Resolution  66

- G -
glb_set  192
Global Array Library Quick Reference  192
Goto Statement Example  27
Goto Statment Definition  27

- I -
If Statement Definitions  37
If Statement Example  38
Indexed Prompt Files (IPFs)  289
Indirection Operators  49
Inter-task Messaging Libary Quick Reference  187
Introduction  12, 16, 191, 215, 212, 200, 60, 129, 76, 78, 87, 108, 224, 284, 186, 67
Introduction  12, 16, 191, 215, 212, 200, 60, 129, 76, 78, 87, 108, 224, 284, 186, 67
Introduction  12, 16, 191, 215, 212, 200, 60, 129, 76, 78, 87, 108, 224, 284, 186, 67

- J -
Jump Statement Definition  28
Jump Statement Example  29

- L -
Label Statement Definition  29
Label Statement Example  30
Library Configuration Tab  73
Library Limits and Defaults  87
Library Quick Reference  79
Loading DLLs and .DEF files  65
Logical Expressions  42
Logical Operators  49

- M -
Manual Conventions  77
Miscellaneous Operators  52
More on Arrays  56
More on Functions  53
More on Variables  55
msg_flush  189
msg_freecount  191
msg_read  188
msg_send  189
msg_senderid  190
msg_sendername  190
msg_setname  188



p337

© Zentel Telecom Ltd, 2009

- N -
Nailing transmit timeslots to H.100 or SCBUS  288
Notes on Style  15

- O -
Onsignal Declaration Definition  22

- P -
Performance and blocking calls  133
Private and Public Objects  134
Program Structure  18

- R -
Registry Settings  69
Restart Statement Definition  31
Restart Statement Example  31
Return Statement Definition  30
Return Statement Example  30
Run-time Initialisation and configuration  228

- S -
Saccept  220
Scheck  221
Sclose  217
Sconnect  216
Scrolling Log Tabs  70
Semaphore Library Quick Reference  198
Shostname  222
Side Effects From Signals  88
Simple VOIP -> TDM example  233
Simple VOIP example  286
Slisten  219
SMabort  302
SMaddASRitem  314
SMaddASRvocab  313
SMcardinfo  295
SMclrASRitems  315
SMclrASRvocabs  313
SMclrtones  308
SMconfend  319
SMconfjoin  316
SMconfleave  318
SMconfstart  316
SMcreateTDM  328
SMctlASR  315
SMctlCPtone  305
SMctlDtmf  305
SMctlGrunt  306
SMctlPulse  305
SMdestroyTDM  329
SMdestroyVMP  325
SMdetected  320



p338

© Zentel Telecom Ltd, 2009

SMdump  319
SMfeedunlisten  331
SMgetcards  295
SMgetchannels  294
SMgetmodules  294
SMgetrecparm  302
SMgetrecrognised  310
SMgetslot  303
SMgetttones  308
SMlisten  304
SMmode  312
SMmodinfo  296
SMplay  296
SMplaydigits  309
SMplayh  298
SMplayptone  309
SMplaytone  309
SMrecord  299
SMsetASRchanparm  313
SMsetrecparm  300
SMstate  319
SMtoneint  306
SMtrace  312
SMtraceTDM  328
SMtraceVMP  325
SMunlisten  304
SMwaittones  307
SMword  320
Some Simple Examples  130, 230, 284
SopenDGRAM  222
Srecv  218
SrecvDGRAM  223
Ssend  220
SsendDGRAM  222
Statement Block Definition  23
Stop Statement Definition  32
Stop Statement Example  32
Strace  224
String Concatenation Operator
String Library Quick Reference  170
Switch Statement Definition  39
Switch Statement Example  39
SWmode  282
SWquery  283
SWset  283
Syntax definitions  17
syslog  113
System Library Quick Reference  88
sys_bufcopy  90
sys_bufget  91
sys_bufmove  91
sys_bufrls  90
sys_bufrlsall  90
sys_bufset  91
sys_bufuse  89
sys_date  103
sys_dateadd  105
sys_datecvt  107
sys_dirfirst  100
sys_dirmake  102
sys_dirnext  101
sys_dirremove  99
sys_diskfree  101
sys_exit  107
sys_fcopy  99



p339

© Zentel Telecom Ltd, 2009

sys_fdelete  102
sys_fhclose  93
sys_fhcloseall  93
sys_fheof  97
sys_fhgetline  96
sys_fhlock  98
sys_fhopen  92
sys_fhputline  96
sys_fhreadbuf  94
sys_fhseek  94
sys_fhsetsize  98
sys_fhunlock  98
sys_fhwritebuf  95
sys_fhwrites  97
sys_finfo  103
sys_frename  100
sys_getenv  108
sys_gethandle  102
sys_settime  106
sys_ticks  104
sys_time  104
sys_timeadd  104
sys_timesub  105
sys_tmrsecs  106
sys_tmrstart  106

- T -
task_arg  86
task_chain  81
task_clrdefer  85
task_defersig  84
task_exec  81, 78
task_getpid  86
task_hangup  83
task_kill  86
task_parentid  82
task_return  82
task_sleep  83
task_spawn  80
TE  Language Operators  47
Teminating Events  290
Terminal Console Library Quick Reference  111
term_attr_def  120
term_box  118
term_clear  124
term_colour  119
term_cur_pos  117
term_errctl  115
term_fill  123
term_kbedit  128
term_kbget  125
term_kbgetx  125
term_kbqsize  127
term_log  115
term_print  118
term_put_nch  123
term_resize  116
term_scroll_area  117
term_size  116
term_write  117
The $if Directive  58
The $include Directive  57
The ACUCFG.CFG Configuration file  224



p340

© Zentel Telecom Ltd, 2009

The Conditional Expression Operator  53
Tools Tab  75
tracelog  114

- W -
While statement Definition  32
While Statement Example  33



p341

© Zentel Telecom Ltd, 2009

 



 

© Zentel Telecom Ltd., 2009
www.telecom-engine.com


	Table of Contents
	The TE Programming Language
	Introduction
	A First Look at the Language
	Notes on Style
	Formal Language Definition
	Introduction
	Syntax definitions
	Program Structure
	Program Structure

	Declaration Block
	Declaration Block Definition
	Declaration Block Examples

	Function Block
	Function Block Definition
	Onsignal Declaration Definition
	Function Declaration Definition
	Function Block Examples

	Statement Block
	Statement Block Definition
	Expression Statement
	Expression Statement Definition
	Assignment Expression
	Function Expression
	Example Expression statements

	Goto Statement
	Goto Statment Definition
	Goto Statement Example

	Jump Statement
	Jump Statement Definition
	Jump Statement Example

	Label Statement
	Label Statement Definition
	Label Statement Example

	Return Statement
	Return Statement Definition
	Return Statement Example

	Restart Statement
	Restart Statement Definition
	Restart Statement Example

	Stop Statement
	Stop Statement Definition
	Stop Statement Example

	While Statement
	While statement Definition
	While Statement Example

	Do Statement
	Do Statement Definition
	Do Statement Example

	For statement
	For Statement Definition
	For Statement Example

	Break Statement
	Break Statement Definition
	Break Statement Example

	Continue Statement
	Continue Statement Definition
	Continue Statement Example

	If statement
	If Statement Definitions
	If Statement Example

	Switch Statement
	Switch Statement Definition
	Switch Statement Example



	More on Expressions
	Expression Types
	Arithmetic Expressions
	Logical Expressions
	Assignment Expressions
	Constant Expressions
	Function Expressions

	More on Operators
	TE  Language Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Assignment Operators
	Indirection Operators
	Miscellaneous Operators
	Ambiguous Operators
	String Concatenation Operator
	The Conditional Expression Operator

	More on Functions
	More on Functions

	More on Variables
	More on Variables
	More on Arrays

	Compiler Directives
	Compiler Directives
	The $include Directive
	The $if Directive


	The TE Compiler
	Introduction
	Compiler Options
	Environment Variables
	Loading DLLs and .DEF files
	Function Name Resolution

	The TE Run-Time Engine
	Introduction
	Command Line Options
	Registry Settings
	Scrolling Log Tabs
	Library Configuration Tab
	Tools Tab

	The TE Standard Library Set
	Introduction
	Manual Conventions
	Task Management Library
	Introduction
	Library Quick Reference
	Task Management Library Function Reference
	task_spawn
	task_chain
	task_exec
	task_parentid
	task_return
	task_sleep
	task_hangup
	task_defersig
	task_clrdefer
	task_getpid
	task_arg
	task_kill


	System library
	Introduction
	Library Limits and Defaults
	Side Effects From Signals
	System Library Quick Reference
	System Library Function Reference
	Buffer Manipulation Functions
	sys_bufuse
	sys_bufrls
	sys_bufrlsall
	sys_bufcopy
	sys_bufmove
	sys_bufget
	sys_bufset

	File Handle Functions
	sys_fhopen
	sys_fhclose
	sys_fhcloseall
	sys_fhseek
	sys_fhreadbuf
	sys_fhwritebuf
	sys_fhgetline
	sys_fhputline
	sys_fhwrites
	sys_fheof
	sys_fhlock
	sys_fhunlock
	sys_fhsetsize

	File System Functions
	sys_fcopy
	sys_dirremove
	sys_frename
	sys_dirfirst
	sys_dirnext
	sys_diskfree
	sys_fdelete
	sys_dirmake
	sys_gethandle
	sys_finfo

	Date and Time Functions
	sys_date
	sys_time
	sys_ticks
	sys_timeadd
	sys_timesub
	sys_dateadd
	sys_tmrstart
	sys_tmrsecs
	sys_settime
	sys_datecvt

	Other System Functions
	sys_exit
	sys_getenv



	Terminal Console Library
	Introduction
	Terminal Console Library Quick Reference
	Terminal Console Function Reference
	applog
	syslog
	errlog
	tracelog
	term_errctl
	term_log
	term_resize
	term_size
	term_write
	term_scroll_area
	term_cur_pos
	term_print
	term_box
	term_colour
	term_attr_def
	term_put_nch
	term_fill
	term_clear
	term_kbget
	term_kbgetx
	term_kbqsize
	term_kbedit


	ActiveX Data Ojects (ADO) Database Library
	Introduction
	Some Simple Examples
	Blocking or non-blocking mode
	Performance and blocking calls
	Private and Public Objects
	Error Codes
	ADO Library Function Quick Reference
	ADO Function Reference
	adoTrace
	adoErrVerbose
	adoBlockMode
	adoLastError
	adoBusyState
	adoConnection
	adoConnOpen
	adoConnParmGet
	adoConnParmSet
	adoConnClose
	adoConnGetHandle
	adoConnState
	adoConnTransBegin
	adoConnTransCommit
	adoConnTransCancel
	adoRecordSet
	adoRSetQuery
	adoRSetCmd
	adoRSetResync
	adoRSetRequery
	adoRSetParmGet
	adoRSetParmSet
	adoRSetClose
	adoRSetGetHandle
	adoRSetRecCount
	adoRSetMove
	adoRSetMoveFirst
	adoRSetMoveLast
	adoRSetMoveNext
	adoRSetMovePrev
	adoRSetAddNew
	adoRSetUpdate
	adoRSetCancelUpd
	adoRSetUpdBatch
	adoRSetCancelBatch
	adoRSetDelete
	adoRSetState
	adoRSetIsBOF
	adoRSetIsEOF
	adoFldCount
	adoFldGetName
	adoFldGetValue
	adoFldSetValue
	adoFldParmGet
	adoFldParmSet
	adoErrCount
	adoErrMessage
	adoErrValue
	adoErrNative
	adoErrClear


	String Manipulation Library
	Introduction
	String Library Quick Reference
	String Manipulation Function Reference
	strtok
	strlen
	strsub
	strcnt
	strstrip
	strend
	strpos
	strupr
	strlwr
	strcmp
	strindex
	strselect
	strltrim
	strrtrim
	strrjust
	strljust
	itoc
	ctoi
	itox
	xtoi
	strtohexi
	inttohexi
	unstohexi
	hexitostr
	hexitoint
	hexitouns


	Inter-task Messaging Library
	Introduction
	Inter-task Messaging Libary Quick Reference
	Inter-task Messaging Function Reference
	msg_setname
	msg_read
	msg_send
	msg_flush
	msg_senderid
	msg_sendername
	msg_freecount


	Global Array Library
	Introduction
	Global Array Library Quick Reference
	Global Array Function Reference
	glb_set
	glb_get
	array_dim
	array_free
	array_set
	array_get
	array_search
	array_srchset


	Semaphore Library
	Introduction
	Semaphore Library Quick Reference
	Semaphore Function Reference
	sem_test
	sem_set
	sem_clear
	sem_clrall


	Clipper Database Library
	Clipper Database Library Quick Reference
	Introduction
	Clipper Database Function Reference
	db_open
	db_ixopen
	db_get
	db_append
	db_fget
	db_fput
	db_rls
	db_close
	db_nrecs
	db_nfields
	db_fwidth
	db_fname
	db_rlsall
	db_first
	db_next
	db_prev
	db_key
	db_recnum
	db_flock


	Floating Point Library
	Introduction
	Floating Point Library Quick Reference
	Floating Point Library Reference
	fp_decs
	fp_add
	fp_sub
	fp_mul
	fp_div
	fp_pow
	fp_rnd


	Sockets Library
	Introduction
	Sockets Library Quick Reference
	Sockets Function Reference
	Sconnect
	Sclose
	Srecv
	Slisten
	Saccept
	Ssend
	Scheck
	Shostname
	SopenDGRAM
	SsendDGRAM
	SrecvDGRAM
	Strace


	Aculab E1/T1 Card Library
	Introduction
	The ACUCFG.CFG Configuration file
	Run-time Initialisation and configuration
	Some Simple Examples
	Simple VOIP -> TDM example
	Aculab Call Control Quick Reference
	Aculab Call Control Function Reference
	CCnports
	CCsigtype
	CCsiginfo
	CCtrunktype
	CCwatchdog
	CCalarm
	CCtrace
	CCgetslot
	CClisten
	CCunlisten
	CCstate
	CCuse
	CCwait
	CCabort
	CCenablein
	CCaccept
	CCmkcall
	CCdisconnect
	CCrelease
	CCsetparm
	CCclrparms
	CCgetparm
	CCalerting
	CCgetcause
	CCoverlap
	CCgetcharge
	CCsetupack
	CCproceed
	CCprogress
	CCgetaddr
	CCanscode
	CCputcharge
	CCnotify
	CCkeypad
	CChold
	CCreconnect
	CCenquiry
	CCsetparty
	CCtransfer
	CCgetxparm
	CCsetxparm
	CCclrxparms
	CCgetcnctless
	CCmkxcall
	CCsendfeat
	CCsndcnctless
	CCstrtohex
	CCinttohex
	CCunstohex
	SWmode
	SWquery
	SWset
	CCcreateTDM


	Aculab Prosody Card Library
	Introduction
	Some Simple Examples
	Simple VOIP example
	Board Opening Order
	Nailing transmit timeslots to H.100 or SCBUS
	Indexed Prompt Files (IPFs)
	Teminating Events
	Blocking and Non-Blocking Mode
	Aculab Prosody Speech Functions Quick Reference
	Aculab Prosody Speech Function Reference
	SMgetmodules
	SMgetchannels
	SMgetcards
	SMcardinfo
	SMmodinfo
	SMplay
	SMplayh
	SMrecord
	SMsetrecparm
	SMgetrecparm
	SMabort
	SMgetslot
	SMlisten
	SMunlisten
	SMctlDtmf
	SMctlPulse
	SMctlCPtone
	SMctlGrunt
	SMtoneint
	SMwaittones
	SMgetttones
	SMclrtones
	SMplaytone
	SMplaydigits
	SMplayptone
	SMgetrecrognised
	SMmode
	SMtrace
	SMaddASRvocab
	SMclrASRvocabs
	SMsetASRchanparm
	SMaddASRitem
	SMclrASRitems
	SMctlASR
	SMconfstart
	SMconfjoin
	SMconfleave
	SMconfend
	SMdump
	SMstate
	SMdetected
	SMword
	SMplayph
	SMplaypr
	SMplaystrph
	SMplaystrphm
	SMcreateVMP
	SMtraceVMP
	SMdestroyVMP
	SMsetcodec
	SMclrcodecs
	SMcreateTDM
	SMtraceTDM
	SMdestroyTDM
	SMfeedlisten
	SMfeedunlisten




